368 research outputs found

    On the Information Loss of the Max-Log Approximation in BICM Systems

    Full text link
    We present a comprehensive study of the information rate loss of the max-log approximation for MM-ary pulse-amplitude modulation (PAM) in a bit-interleaved coded modulation (BICM) system. It is widely assumed that the calculation of L-values using the max-log approximation leads to an information loss. We prove that this assumption is correct for all MM-PAM constellations and labelings with the exception of a symmetric 4-PAM constellation labeled with a Gray code. We also show that for max-log L-values, the BICM generalized mutual information (GMI), which is an achievable rate for a standard BICM decoder, is too pessimistic. In particular, it is proved that the so-called "harmonized" GMI, which can be seen as the sum of bit-level GMIs, is achievable without any modifications to the decoder. We then study how bit-level channel symmetrization and mixing affect the mutual information (MI) and the GMI for max-log L-values. Our results show that these operations, which are often used when analyzing BICM systems, preserve the GMI. However, this is not necessarily the case when the MI is considered. Necessary and sufficient conditions under which these operations preserve the MI are provided

    Bit-Wise Decoders for Coded Modulation and Broadcast Coded Slotted ALOHA

    Get PDF
    This thesis deals with two aspects of wireless communications. The first aspect is about efficient point-to-point data transmission. To achieve high spectral efficiency, coded modulation, which is a concatenation of higher order modulation with error correction coding, is used. Bit-interleaved coded modulation (BICM) is a pragmatic approach to coded modulation, where soft information on encoded bits is calculated at the receiver and passed to a bit-wise decoder. Soft information is usually obtained in the form of log-likelihood ratios (also known as L-values), calculated using the max-log approximation. In this thesis, we analyze bit-wise decoders for pulse-amplitude modulation (PAM) constellations over the additive white Gaussian noise (AWGN) channel when the max-log approximation is used for calculating L-values. First, we analyze BICM systems from an information theoretic perspective. We prove that the max-log approximation causes information loss for all PAM constellations and labelings with the exception of a symmetric 4-PAM constellation labeled with a Gray code. We then analyze how the max-log approximation affects the generalized mutual information (GMI), which is an achievable rate for a standard BICM decoder. Second, we compare the performance of the standard BICM decoder with that of the ML decoder. We show that, when the signal-to-noise ratio (SNR) goes to infinity, the loss in terms of pairwise error probability is bounded by 1.25 dB for any two codewords. The analysis further shows that the loss is zero for a wide range of linear codes. The second aspect of wireless communications treated in this thesis is multiple channel access. Our main objective here is to provide reliable message exchange between nodes in a wireless ad hoc network with stringent delay constraints. To that end, we propose an uncoordinated medium access control protocol, termed all-to-all broadcast coded slotted ALOHA (B-CSA), that exploits coding over packets at the transmitter side and successive interference cancellation at the receiver side. The protocol resembles low-density parity-check codes and can be analyzed using the theory of codes on graphs. The packet loss rate performance of the protocol exhibits a threshold behavior with distinct error floor and waterfall regions. We derive a tight error floor approximation that is used for the optimization of the protocol. We also show how the error floor approximation can be used to design protocols for networks, where users have different reliability requirements. We use B-CSA in vehicular networks and show that it outperforms carrier sense multiple access currently adopted as the MAC protocol for vehicular communications. Finally, we investigate the possibility of establishing a handshake in vehicular networks by means of B-CSA

    Replacing the Soft FEC Limit Paradigm in the Design of Optical Communication Systems

    Get PDF
    The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit-error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bit-wise decoding. It is shown that for low code rates and high order modulation formats, the use of the soft FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis

    On BICM receivers for TCM transmission

    Get PDF
    Recent results have shown that the performance of bit-interleaved coded modulation (BICM) using convolutional codes in nonfading channels can be significantly improved when the interleaver takes a trivial form (BICM-T), i.e., when it does not interleave the bits at all. In this paper, we give a formal explanation for these results and show that BICM-T is in fact the combination of a TCM transmitter and a BICM receiver. To predict the performance of BICM-T, a new type of distance spectrum for convolutional codes is introduced, analytical bounds based on this spectrum are developed, and asymptotic approximations are also presented. It is shown that the minimum distance of the code is not the relevant optimization criterion for BICM-T. Optimal convolutional codes for different constrain lengths are tabulated and asymptotic gains of about 2 dB are obtained. These gains are found to be the same as those obtained by Ungerboeck's one-dimensional trellis coded modulation (1D-TCM), and therefore, in nonfading channels, BICM-T is shown to be asymptotically as good as 1D-TCM.Comment: Submitted to the IEEE Transactions on Communication

    On the BICM Capacity

    Full text link
    Optimal binary labelings, input distributions, and input alphabets are analyzed for the so-called bit-interleaved coded modulation (BICM) capacity, paying special attention to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded binary code results in a higher capacity than the binary reflected gray code (BRGC) and the natural binary code (NBC). The 1 dB gap between the additive white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be almost completely removed if the input symbol distribution is properly selected. First-order asymptotics of the BICM capacity for arbitrary input alphabets and distributions, dimensions, mean, variance, and binary labeling are developed. These asymptotics are used to define first-order optimal (FOO) constellations for BICM, i.e. constellations that make BICM achieve the Shannon limit -1.59 \tr{dB}. It is shown that the \Eb/N_0 required for reliable transmission at asymptotically low rates in BICM can be as high as infinity, that for uniform input distributions and 8-PAM there are only 72 classes of binary labelings with a different first-order asymptotic behavior, and that this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general answer to the question of FOO constellations for BICM is also given: using the Hadamard transform, it is found that for uniform input distributions, a constellation for BICM is FOO if and only if it is a linear projection of a hypercube. A constellation based on PAM or quadrature amplitude modulation input alphabets is FOO if and only if they are labeled by the NBC; if the constellation is based on PSK input alphabets instead, it can never be FOO if the input alphabet has more than four points, regardless of the labeling.Comment: Submitted to the IEEE Transactions on Information Theor

    Towards Fully Optimized BICM Transceivers

    Get PDF
    Bit-interleaved coded modulation (BICM) transceivers often use equally spaced constellations and a random interleaver. In this paper, we propose a new BICM design, which considers hierarchical (nonequally spaced) constellations, a bit-level multiplexer, and multiple interleavers. It is shown that this new scheme increases the degrees of freedom that can be exploited in order to improve its performance. Analytical bounds on the bit error rate (BER) of the system in terms of the constellation parameters and the multiplexing rules are developed for the additive white Gaussian Noise (AWGN) and Nakagami-mm fading channels. These bounds are then used to design the BICM transceiver. Numerical results show that, compared to conventional BICM designs, and for a target BER of 10−610^{-6}, gains up to 3 dB in the AWGN channel are obtained. For fading channels, the gains depend on the fading parameter, and reach 2 dB for a target BER of 10−710^{-7} and m=5m=5.Comment: Submitted to the IEEE Transactions on Communication
    • …
    corecore