10 research outputs found

    A Review on Computational Intelligence Techniques in Cloud and Edge Computing

    Get PDF
    Cloud computing (CC) is a centralized computing paradigm that accumulates resources centrally and provides these resources to users through Internet. Although CC holds a large number of resources, it may not be acceptable by real-time mobile applications, as it is usually far away from users geographically. On the other hand, edge computing (EC), which distributes resources to the network edge, enjoys increasing popularity in the applications with low-latency and high-reliability requirements. EC provides resources in a decentralized manner, which can respond to users’ requirements faster than the normal CC, but with limited computing capacities. As both CC and EC are resource-sensitive, several big issues arise, such as how to conduct job scheduling, resource allocation, and task offloading, which significantly influence the performance of the whole system. To tackle these issues, many optimization problems have been formulated. These optimization problems usually have complex properties, such as non-convexity and NP-hardness, which may not be addressed by the traditional convex optimization-based solutions. Computational intelligence (CI), consisting of a set of nature-inspired computational approaches, recently exhibits great potential in addressing these optimization problems in CC and EC. This article provides an overview of research problems in CC and EC and recent progresses in addressing them with the help of CI techniques. Informative discussions and future research trends are also presented, with the aim of offering insights to the readers and motivating new research directions

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Energy-efficient Nature-Inspired techniques in Cloud computing datacenters

    Get PDF
    Cloud computing is a systematic delivery of computing resources as services to the consumers via the Internet. Infrastructure as a Service (IaaS) is the capability provided to the consumer by enabling smarter access to the processing, storage, networks, and other fundamental computing resources, where the consumer can deploy and run arbitrary software including operating systems and applications. The resources are sometimes available in the form of Virtual Machines (VMs). Cloud services are provided to the consumers based on the demand, and are billed accordingly. Usually, the VMs run on various datacenters, which comprise of several computing resources consuming lots of energy resulting in hazardous level of carbon emissions into the atmosphere. Several researchers have proposed various energy-efficient methods for reducing the energy consumption in datacenters. One such solutions are the Nature-Inspired algorithms. Towards this end, this paper presents a comprehensive review of the state-of-the-art Nature-Inspired algorithms suggested for solving the energy issues in the Cloud datacenters. A taxonomy is followed focusing on three key dimension in the literature including virtualization, consolidation, and energy-awareness. A qualitative review of each techniques is carried out considering key goal, method, advantages, and limitations. The Nature-Inspired algorithms are compared based on their features to indicate their utilization of resources and their level of energy-efficiency. Finally, potential research directions are identified in energy optimization in data centers. This review enable the researchers and professionals in Cloud computing datacenters in understanding literature evolution towards to exploring better energy-efficient methods for Cloud computing datacenters

    Resource provisioning and scheduling algorithms for hybrid workflows in edge cloud computing

    Get PDF
    In recent years, Internet of Things (IoT) technology has been involved in a wide range of application domains to provide real-time monitoring, tracking and analysis services. The worldwide number of IoT-connected devices is projected to increase to 43 billion by 2023, and IoT technologies are expected to engaged in 25% of business sector. Latency-sensitive applications in scope of intelligent video surveillance, smart home, autonomous vehicle, augmented reality, are all emergent research directions in industry and academia. These applications are required connecting large number of sensing devices to attain the desired level of service quality for decision accuracy in a sensitive timely manner. Moreover, continuous data stream imposes processing large amounts of data, which adds a huge overhead on computing and network resources. Thus, latency-sensitive and resource-intensive applications introduce new challenges for current computing models, i.e, batch and stream. In this thesis, we refer to the integrated application model of stream and batch applications as a hybrid work ow model. The main challenge of the hybrid model is achieving the quality of service (QoS) requirements of the two computation systems. This thesis provides a systemic and detailed modeling for hybrid workflows which describes the internal structure of each application type for purposes of resource estimation, model systems tuning, and cost modeling. For optimizing the execution of hybrid workflows, this thesis proposes algorithms, techniques and frameworks to serve resource provisioning and task scheduling on various computing systems including cloud, edge cloud and cooperative edge cloud. Overall, experimental results provided in this thesis demonstrated strong evidences on the responsibility of proposing different understanding and vision on the applications of integrating stream and batch applications, and how edge computing and other emergent technologies like 5G networks and IoT will contribute on more sophisticated and intelligent solutions in many life disciplines for more safe, secure, healthy, smart and sustainable society

    Distributed and Lightweight Meta-heuristic Optimization method for Complex Problems

    Get PDF
    The world is becoming more prominent and more complex every day. The resources are limited and efficiently use them is one of the most requirement. Finding an Efficient and optimal solution in complex problems needs to practical methods. During the last decades, several optimization approaches have been presented that they can apply to different optimization problems, and they can achieve different performance on various problems. Different parameters can have a significant effect on the results, such as the type of search spaces. Between the main categories of optimization methods (deterministic and stochastic methods), stochastic optimization methods work more efficient on big complex problems than deterministic methods. But in highly complex problems, stochastic optimization methods also have some issues, such as execution time, convergence to local optimum, incompatible with distributed systems, and dependence on the type of search spaces. Therefore this thesis presents a distributed and lightweight metaheuristic optimization method (MICGA) for complex problems focusing on four main tracks. 1) The primary goal is to improve the execution time by MICGA. 2) The proposed method increases the stability and reliability of the results by using the multi-population strategy in the second track. 3) MICGA is compatible with distributed systems. 4) Finally, MICGA is applied to the different type of optimization problems with other kinds of search spaces (continuous, discrete and order based optimization problems). MICGA has been compared with other efficient optimization approaches. The results show the proposed work has been achieved enough improvement on the main issues of the stochastic methods that are mentioned before.Maailmasta on päivä päivältä tulossa yhä monimutkaisempi. Resurssit ovat rajalliset, ja siksi niiden tehokas käyttö on erittäin tärkeää. Tehokkaan ja optimaalisen ratkaisun löytäminen monimutkaisiin ongelmiin vaatii tehokkaita käytännön menetelmiä. Viime vuosikymmenien aikana on ehdotettu useita optimointimenetelmiä, joilla jokaisella on vahvuutensa ja heikkoutensa suorituskyvyn ja tarkkuuden suhteen erityyppisten ongelmien ratkaisemisessa. Parametreilla, kuten hakuavaruuden tyypillä, voi olla merkittävä vaikutus tuloksiin. Optimointimenetelmien pääryhmistä (deterministiset ja stokastiset menetelmät) stokastinen optimointi toimii suurissa monimutkaisissa ongelmissa tehokkaammin kuin deterministinen optimointi. Erittäin monimutkaisissa ongelmissa stokastisilla optimointimenetelmillä on kuitenkin myös joitain ongelmia, kuten korkeat suoritusajat, päätyminen paikallisiin optimipisteisiin, yhteensopimattomuus hajautetun toteutuksen kanssa ja riippuvuus hakuavaruuden tyypistä. Tämä opinnäytetyö esittelee hajautetun ja kevyen metaheuristisen optimointimenetelmän (MICGA) monimutkaisille ongelmille keskittyen neljään päätavoitteeseen: 1) Ensisijaisena tavoitteena on pienentää suoritusaikaa MICGA:n avulla. 2) Lisäksi ehdotettu menetelmä lisää tulosten vakautta ja luotettavuutta käyttämällä monipopulaatiostrategiaa. 3) MICGA tukee hajautettua toteutusta. 4) Lopuksi MICGA-menetelmää sovelletaan erilaisiin optimointiongelmiin, jotka edustavat erityyppisiä hakuavaruuksia (jatkuvat, diskreetit ja järjestykseen perustuvat optimointiongelmat). Työssä MICGA-menetelmää verrataan muihin tehokkaisiin optimointimenetelmiin. Tulokset osoittavat, että ehdotetulla menetelmällä saavutetaan selkeitä parannuksia yllä mainittuihin stokastisten menetelmien pääongelmiin liittyen

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies

    Proposition d’une architecture holonique auto-organisée et évolutive pour le pilotage des systèmes de production

    Get PDF
    The manufacturing world is being deeply challenged with a set of ever demanding constraints where from one side, the costumers are requiring products to be more customizable, with higher quality at lower prices, and on other side, companies have to deal on a daily basis with internal disturbances that range from machine breakdown to worker absence and from demand fluctuation to frequent production changes. This dissertation proposes a manufacturing control architecture, following the holonic principles developed in the ADAptive holonic COntrol aRchitecture (ADACOR) and extending it taking inspiration in evolutionary theories and making use of self- organization mechanisms. The use of evolutionary theories enrich the proposed control architecture by allowing evolution in two distinct ways, responding accordingly to the type and degree of the disturbance that appears. The first component, named behavioural self- organization, allows each system’s entity to dynamically adapt its internal behaviour, addressing small disturbances. The second component, named structural self-organization, addresses bigger disturbances by allowing the system entities to re-arrange their rela- tionships, and consequently changing the system in a structural manner. The proposed self-organized holonic manufacturing control architecture was validated at a AIP-PRIMECA flexible manufacturing cell. The achieved experimental results have also shown an improvement of the key performance indicators over the hierarchical and heterarchical control architecture.Le monde des entreprises est profondément soumis à un ensemble de contraintes toujours plus exigeantes provenant d’une part des clients, exigeant des produits plus personnalisables, de qualité supérieure et à faible coût, et d’autre part des aléas internes auxentreprises, comprenant les pannes machines, les défaillances humaines, la fluctuation de la demande, les fréquentes variations de production. Cette thèse propose une architecture de contrôle de systèmes de production, basée sur les principes holoniques développées dans l’architecture ADACOR (ADAptive holonic COntrol aRchitecture), et l’étendant en s’inspirant des théories de l’évolution et en utilisant des mécanismes d’auto-organisation. L’utilisation des théories de l’évolution enrichit l’architecture de contrôle en permettant l’évolution de deux manières distinctes, en réponse au type et au degré de la perturbation apparue. Le premier mode d’adaptation, appelé auto-organisation comportementale, permet à chaque entité qui compose le système d’adapter dynamiquement leur comportement interne, gérant de cette façon de petites perturbations. Le second mode, nommé auto-organisation structurelle, traite de plus grandes perturbations, en permettant aux entités du système de ré-organiser leurs relations, et par conséquent modifier structurellement le système. L’architecture holonique auto-organisée de contrôle de systèmes de production proposée dans cette thèse a été validée sur une cellule de production flexible AIP-PRIMECA. Les résultats ont montré une amélioration des indicateurs clés de performance par rapport aux architectures de contrôle hiérarchiques et hétérarchiques

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    corecore