12,172 research outputs found

    Uncertainty-Aware Attention for Reliable Interpretation and Prediction

    Get PDF
    Department of Computer Science and EngineeringAttention mechanism is effective in both focusing the deep learning models on relevant features and interpreting them. However, attentions may be unreliable since the networks that generate them are often trained in a weakly-supervised manner. To overcome this limitation, we introduce the notion of input-dependent uncertainty to the attention mechanism, such that it generates attention for each feature with varying degrees of noise based on the given input, to learn larger variance on instances it is uncertain about. We learn this Uncertainty-aware Attention (UA) mechanism using variational inference, and validate it on various risk prediction tasks from electronic health records on which our model significantly outperforms existing attention models. The analysis of the learned attentions shows that our model generates attentions that comply with clinicians' interpretation, and provide richer interpretation via learned variance. Further evaluation of both the accuracy of the uncertainty calibration and the prediction performance with "I don't know'' decision show that UA yields networks with high reliability as well.ope

    MLPerf Inference Benchmark

    Full text link
    Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and five orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. In this paper, we present our benchmarking method for evaluating ML inference systems. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. The first call for submissions garnered more than 600 reproducible inference-performance measurements from 14 organizations, representing over 30 systems that showcase a wide range of capabilities. The submissions attest to the benchmark's flexibility and adaptability.Comment: ISCA 202

    Accelerated physical emulation of Bayesian inference in spiking neural networks

    Get PDF
    The massively parallel nature of biological information processing plays an important role for its superiority to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.Comment: This preprint has been published 2019 November 14. Please cite as: Kungl A. F. et al. (2019) Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks. Front. Neurosci. 13:1201. doi: 10.3389/fnins.2019.0120

    A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks

    Full text link
    An explosion of high-throughput DNA sequencing in the past decade has led to a surge of interest in population-scale inference with whole-genome data. Recent work in population genetics has centered on designing inference methods for relatively simple model classes, and few scalable general-purpose inference techniques exist for more realistic, complex models. To achieve this, two inferential challenges need to be addressed: (1) population data are exchangeable, calling for methods that efficiently exploit the symmetries of the data, and (2) computing likelihoods is intractable as it requires integrating over a set of correlated, extremely high-dimensional latent variables. These challenges are traditionally tackled by likelihood-free methods that use scientific simulators to generate datasets and reduce them to hand-designed, permutation-invariant summary statistics, often leading to inaccurate inference. In this work, we develop an exchangeable neural network that performs summary statistic-free, likelihood-free inference. Our framework can be applied in a black-box fashion across a variety of simulation-based tasks, both within and outside biology. We demonstrate the power of our approach on the recombination hotspot testing problem, outperforming the state-of-the-art.Comment: 9 pages, 8 figure
    corecore