25 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Single image super resolution for spatial enhancement of hyperspectral remote sensing imagery

    Get PDF
    Hyperspectral Imaging (HSI) has emerged as a powerful tool for capturing detailed spectral information across various applications, such as remote sensing, medical imaging, and material identification. However, the limited spatial resolution of acquired HSI data poses a challenge due to hardware and acquisition constraints. Enhancing the spatial resolution of HSI is crucial for improving image processing tasks, such as object detection and classification. This research focuses on utilizing Single Image Super Resolution (SISR) techniques to enhance HSI, addressing four key challenges: the efficiency of 3D Deep Convolutional Neural Networks (3D-DCNNs) in HSI enhancement, minimizing spectral distortions, tackling data scarcity, and improving state-of-the-art performance. The thesis establishes a solid theoretical foundation and conducts an in-depth literature review to identify trends, gaps, and future directions in the field of HSI enhancement. Four chapters present novel research targeting each of the aforementioned challenges. All experiments are performed using publicly available datasets, and the results are evaluated both qualitatively and quantitatively using various commonly used metrics. The findings of this research contribute to the development of a novel 3D-CNN architecture known as 3D Super Resolution CNN 333 (3D-SRCNN333). This architecture demonstrates the capability to enhance HSI with minimal spectral distortions while maintaining acceptable computational cost and training time. Furthermore, a Bayesian-optimized hybrid spectral spatial loss function is devised to improve the spatial quality and minimize spectral distortions, combining the best characteristics of both domains. Addressing the challenge of data scarcity, this thesis conducts a thorough study on Data Augmentation techniques and their impact on the spectral signature of HSI. A new Data Augmentation technique called CutMixBlur is proposed, and various combinations of Data Augmentation techniques are evaluated to address the data scarcity challenge, leading to notable enhancements in performance. Lastly, the 3D-SRCNN333 architecture is extended to the frequency domain and wavelet domain to explore their advantages over the spatial domain. The experiments reveal promising results with the 3D Complex Residual SRCNN (3D-CRSRCNN), surpassing the performance of 3D-SRCNN333. The findings presented in this thesis have been published in reputable conferences and journals, indicating their contribution to the field of HSI enhancement. Overall, this thesis provides valuable insights into the field of HSI-SISR, offering a thorough understanding of the advancements, challenges, and potential applications. The developed algorithms and methodologies contribute to the broader goal of improving the spatial resolution and spectral fidelity of HSI, paving the way for further advancements in scientific research and practical implementations.Hyperspectral Imaging (HSI) has emerged as a powerful tool for capturing detailed spectral information across various applications, such as remote sensing, medical imaging, and material identification. However, the limited spatial resolution of acquired HSI data poses a challenge due to hardware and acquisition constraints. Enhancing the spatial resolution of HSI is crucial for improving image processing tasks, such as object detection and classification. This research focuses on utilizing Single Image Super Resolution (SISR) techniques to enhance HSI, addressing four key challenges: the efficiency of 3D Deep Convolutional Neural Networks (3D-DCNNs) in HSI enhancement, minimizing spectral distortions, tackling data scarcity, and improving state-of-the-art performance. The thesis establishes a solid theoretical foundation and conducts an in-depth literature review to identify trends, gaps, and future directions in the field of HSI enhancement. Four chapters present novel research targeting each of the aforementioned challenges. All experiments are performed using publicly available datasets, and the results are evaluated both qualitatively and quantitatively using various commonly used metrics. The findings of this research contribute to the development of a novel 3D-CNN architecture known as 3D Super Resolution CNN 333 (3D-SRCNN333). This architecture demonstrates the capability to enhance HSI with minimal spectral distortions while maintaining acceptable computational cost and training time. Furthermore, a Bayesian-optimized hybrid spectral spatial loss function is devised to improve the spatial quality and minimize spectral distortions, combining the best characteristics of both domains. Addressing the challenge of data scarcity, this thesis conducts a thorough study on Data Augmentation techniques and their impact on the spectral signature of HSI. A new Data Augmentation technique called CutMixBlur is proposed, and various combinations of Data Augmentation techniques are evaluated to address the data scarcity challenge, leading to notable enhancements in performance. Lastly, the 3D-SRCNN333 architecture is extended to the frequency domain and wavelet domain to explore their advantages over the spatial domain. The experiments reveal promising results with the 3D Complex Residual SRCNN (3D-CRSRCNN), surpassing the performance of 3D-SRCNN333. The findings presented in this thesis have been published in reputable conferences and journals, indicating their contribution to the field of HSI enhancement. Overall, this thesis provides valuable insights into the field of HSI-SISR, offering a thorough understanding of the advancements, challenges, and potential applications. The developed algorithms and methodologies contribute to the broader goal of improving the spatial resolution and spectral fidelity of HSI, paving the way for further advancements in scientific research and practical implementations

    Compressive Sensing with Side Information: Analysis, Measurements Design and Applications

    Get PDF
    Compressive sensing is a breakthrough technology in view of the fact that it enables the acquisition and reconstruction of certain signals with a number of measurements much lower than those dictated by the Shannon-Nyquist paradigm. It has also been recognised in the last few years that it is possible to improve compressive sensing systems by leveraging additional knowledge – so-called side information – that may be available about the signal of interest. The goal of this thesis is to investigate how to improve the acquisition and reconstruction process in compressive sensing systems in the presence of side information. In particular, by assuming that both the signal of interest and the side information obey a joint Gaussian mixture model (GMM), the thesis focuses on the analysis and the design of linear measurements for two different scenarios: i) the scenario where one wishes to design a linear projection matrix to capture the signal of interest; and ii) the scenario where one wishes to design a linear projection matrix to capture the side information. In both cases, we derive sufficient and (occasionally) necessary conditions on the number of measurements needed for the reliable reconstruction in the low-noise regime and we also derive linear measurement designs that are close to optimal. Numerical results are presented with synthetic data from both Gaussian and GMM distributions and with real world imaging data that confirm that analysis is well aligned with practice. We also showcase our measurement design scheme can lead to significant improvement on the application example associated with the reconstruction of high-resolution RGB images from gray scale images using low-resolution, compressive, hyperspectral measurements as side information

    Simultaneous Multiparametric and Multidimensional Cardiovascular Magnetic Resonance Imaging

    Get PDF
    No abstract available

    MACHINE LEARNING APPLICATIONS TO DATA RECONSTRUCTION IN MARINE BIOGEOCHEMISTRY.

    Get PDF
    Driven by the increase of greenhouse gas emissions, climate change is causing significant shifts in the Earth's climatic patterns, profoundly affecting our oceans. In recent years, our capacity to monitor and understand the state and variability of the ocean has been significantly enhanced, thanks to improved observational capacity, new data-driven approaches, and advanced computational capabilities. Contemporary marine analyses typically integrate multiple data sources: numerical models, satellite data, autonomous instruments, and ship-based measurements. Temperature, salinity, and several other ocean essential variables, such as oxygen, chlorophyll, and nutrients, are among the most frequently monitored variables. Each of these sources and variables, while providing valuable insights, has distinct limitations in terms of uncertainty, spatial and temporal coverage, and resolution. The application of deep learning offers a promising avenue for addressing challenges in data prediction, notably in data reconstruction and interpolation, thus enhancing our ability to monitor and understand the ocean. This thesis proposes and evaluates the performances of a variety of neural network architectures, examining the intricate relationship between methods, ocean data sources, and challenges. A special focus is given to the biogeochemistry of the Mediterranean Sea. A primary objective is predicting low-sampled biogeochemical variables from high-sampled ones. For this purpose, two distinct deep learning models have been developed, each specifically tailored to the dataset used for training. Addressing this challenge not only boosts our capability to predict biogeochemical variables in the highly heterogeneous Mediterranean Sea region but also allows the increase in the usefulness of observational systems such as the BGC-Argo floats. Additionally, a method is introduced to integrate BGC-Argo float observations with outputs from an existing deterministic marine ecosystem model, refining our ability to interpolate and reconstruct biogeochemical variables in the Mediterranean Sea. As the development of novel neural network methods progresses rapidly, the task of establishing benchmarks for data-driven ocean modeling is far from complete. This work offers insights into various applications, highlighting their strengths and limitations, besides highlighting the importance relationship between methods and datasets.Driven by the increase of greenhouse gas emissions, climate change is causing significant shifts in the Earth's climatic patterns, profoundly affecting our oceans. In recent years, our capacity to monitor and understand the state and variability of the ocean has been significantly enhanced, thanks to improved observational capacity, new data-driven approaches, and advanced computational capabilities. Contemporary marine analyses typically integrate multiple data sources: numerical models, satellite data, autonomous instruments, and ship-based measurements. Temperature, salinity, and several other ocean essential variables, such as oxygen, chlorophyll, and nutrients, are among the most frequently monitored variables. Each of these sources and variables, while providing valuable insights, has distinct limitations in terms of uncertainty, spatial and temporal coverage, and resolution. The application of deep learning offers a promising avenue for addressing challenges in data prediction, notably in data reconstruction and interpolation, thus enhancing our ability to monitor and understand the ocean. This thesis proposes and evaluates the performances of a variety of neural network architectures, examining the intricate relationship between methods, ocean data sources, and challenges. A special focus is given to the biogeochemistry of the Mediterranean Sea. A primary objective is predicting low-sampled biogeochemical variables from high-sampled ones. For this purpose, two distinct deep learning models have been developed, each specifically tailored to the dataset used for training. Addressing this challenge not only boosts our capability to predict biogeochemical variables in the highly heterogeneous Mediterranean Sea region but also allows the increase in the usefulness of observational systems such as the BGC-Argo floats. Additionally, a method is introduced to integrate BGC-Argo float observations with outputs from an existing deterministic marine ecosystem model, refining our ability to interpolate and reconstruct biogeochemical variables in the Mediterranean Sea. As the development of novel neural network methods progresses rapidly, the task of establishing benchmarks for data-driven ocean modeling is far from complete. This work offers insights into various applications, highlighting their strengths and limitations, besides highlighting the importance relationship between methods and datasets

    Multi-frame reconstruction using super-resolution, inpainting, segmentation and codecs

    Get PDF
    In this thesis, different aspects of video and light field reconstruction are considered such as super-resolution, inpainting, segmentation and codecs. For this purpose, each of these strategies are analyzed based on a specific goal and a specific database. Accordingly, databases which are relevant to film industry, sport videos, light fields and hyperspectral videos are used for the sake of improvement. This thesis is constructed around six related manuscripts, in which several approaches are proposed for multi-frame reconstruction. Initially, a novel multi-frame reconstruction strategy is proposed for lightfield super-resolution in which graph-based regularization is applied along with edge preserving filtering for improving the spatio-angular quality of lightfield. Second, a novel video reconstruction is proposed which is built based on compressive sensing (CS), Gaussian mixture models (GMM) and sparse 3D transform-domain block matching. The motivation of the proposed technique is the improvement in visual quality performance of the video frames and decreasing the reconstruction error in comparison with the former video reconstruction methods. In the next approach, student-t mixture models and edge preserving filtering are applied for the purpose of video super-resolution. Student-t mixture model has a heavy tail which makes it robust and suitable as a video frame patch prior and rich in terms of log likelihood for information retrieval. In another approach, a hyperspectral video database is considered, and a Bayesian dictionary learning process is used for hyperspectral video super-resolution. To that end, Beta process is used in Bayesian dictionary learning and a sparse coding is generated regarding the hyperspectral video super-resolution. The spatial super-resolution is followed by a spectral video restoration strategy, and the whole process leveraged two different dictionary learnings, in which the first one is trained for spatial super-resolution and the second one is trained for the spectral restoration. Furthermore, in another approach, a novel framework is proposed for replacing advertisement contents in soccer videos in an automatic way by using deep learning strategies. For this purpose, a UNET architecture is applied (an image segmentation convolutional neural network technique) for content segmentation and detection. Subsequently, after reconstructing the segmented content in the video frames (considering the apparent loss in detection), the unwanted content is replaced by new one using a homography mapping procedure. In addition, in another research work, a novel video compression framework is presented using autoencoder networks that encode and decode videos by using less chroma information than luma information. For this purpose, instead of converting Y'CbCr 4:2:2/4:2:0 videos to and from RGB 4:4:4, the video is kept in Y'CbCr 4:2:2/4:2:0 and merged the luma and chroma channels after the luma is downsampled to match the chroma size. An inverse function is performed for the decoder. The performance of these models is evaluated by using CPSNR, MS-SSIM, and VMAF metrics. The experiments reveal that, as compared to video compression involving conversion to and from RGB 4:4:4, the proposed method increases the video quality by about 5.5% for Y'CbCr 4:2:2 and 8.3% for Y'CbCr 4:2:0 while reducing the amount of computation by nearly 37% for Y'CbCr 4:2:2 and 40% for Y'CbCr 4:2:0. The thread that ties these approaches together is reconstruction of the video and light field frames based on different aspects of problems such as having loss of information, blur in the frames, existing noise after reconstruction, existing unpleasant content, excessive size of information and high computational overhead. In three of the proposed approaches, we have used Plug-and-Play ADMM model for the first time regarding reconstruction of videos and light fields in order to address both information retrieval in the frames and tackling noise/blur at the same time. In two of the proposed models, we applied sparse dictionary learning to reduce the data dimension and demonstrate them as an efficient linear combination of basis frame patches. Two of the proposed approaches are developed in collaboration with industry, in which deep learning frameworks are used to handle large set of features and to learn high-level features from the data
    corecore