291,784 research outputs found

    Rigidity of graph products of abelian groups

    Full text link
    We show that if GG is a group and GG has a graph-product decomposition with finitely-generated abelian vertex groups, then GG has two canonical decompositions as a graph product of groups: a unique decomposition in which each vertex group is a directly-indecomposable cyclic group, and a unique decomposition in which each vertex group is a finitely-generated abelian group and the graph satisfies the T0T_0 property. Our results build on results by Droms, Laurence and Radcliffe.Comment: 11 pages, 1 figur

    Practical and Efficient Split Decomposition via Graph-Labelled Trees

    Full text link
    Split decomposition of graphs was introduced by Cunningham (under the name join decomposition) as a generalization of the modular decomposition. This paper undertakes an investigation into the algorithmic properties of split decomposition. We do so in the context of graph-labelled trees (GLTs), a new combinatorial object designed to simplify its consideration. GLTs are used to derive an incremental characterization of split decomposition, with a simple combinatorial description, and to explore its properties with respect to Lexicographic Breadth-First Search (LBFS). Applying the incremental characterization to an LBFS ordering results in a split decomposition algorithm that runs in time O(n+m)α(n+m)O(n+m)\alpha(n+m), where α\alpha is the inverse Ackermann function, whose value is smaller than 4 for any practical graph. Compared to Dahlhaus' linear-time split decomposition algorithm [Dahlhaus'00], which does not rely on an incremental construction, our algorithm is just as fast in all but the asymptotic sense and full implementation details are given in this paper. Also, our algorithm extends to circle graph recognition, whereas no such extension is known for Dahlhaus' algorithm. The companion paper [Gioan et al.] uses our algorithm to derive the first sub-quadratic circle graph recognition algorithm

    On the decomposition threshold of a given graph

    Get PDF
    We study the FF-decomposition threshold δF\delta_F for a given graph FF. Here an FF-decomposition of a graph GG is a collection of edge-disjoint copies of FF in GG which together cover every edge of GG. (Such an FF-decomposition can only exist if GG is FF-divisible, i.e. if e(F)e(G)e(F)\mid e(G) and each vertex degree of GG can be expressed as a linear combination of the vertex degrees of FF.) The FF-decomposition threshold δF\delta_F is the smallest value ensuring that an FF-divisible graph GG on nn vertices with δ(G)(δF+o(1))n\delta(G)\ge(\delta_F+o(1))n has an FF-decomposition. Our main results imply the following for a given graph FF, where δF\delta_F^\ast is the fractional version of δF\delta_F and χ:=χ(F)\chi:=\chi(F): (i) δFmax{δF,11/(χ+1)}\delta_F\le \max\{\delta_F^\ast,1-1/(\chi+1)\}; (ii) if χ5\chi\ge 5, then δF{δF,11/χ,11/(χ+1)}\delta_F\in\{\delta_F^{\ast},1-1/\chi,1-1/(\chi+1)\}; (iii) we determine δF\delta_F if FF is bipartite. In particular, (i) implies that δKr=δKr\delta_{K_r}=\delta^\ast_{K_r}. Our proof involves further developments of the recent `iterative' absorbing approach.Comment: Final version, to appear in the Journal of Combinatorial Theory, Series

    Shared-memory Graph Truss Decomposition

    Full text link
    We present PKT, a new shared-memory parallel algorithm and OpenMP implementation for the truss decomposition of large sparse graphs. A k-truss is a dense subgraph definition that can be considered a relaxation of a clique. Truss decomposition refers to a partitioning of all the edges in the graph based on their k-truss membership. The truss decomposition of a graph has many applications. We show that our new approach PKT consistently outperforms other truss decomposition approaches for a collection of large sparse graphs and on a 24-core shared-memory server. PKT is based on a recently proposed algorithm for k-core decomposition.Comment: 10 pages, conference submissio
    corecore