4 research outputs found

    Adaptative Step Size Selection for Homotopy Methods to Solve Polynomial Equations

    Full text link
    Given a C^1 path of systems of homogeneous polynomial equations f_t, t in [a,b] and an approximation x_a to a zero zeta_a of the initial system f_a, we show how to adaptively choose the step size for a Newton based homotopy method so that we approximate the lifted path (f_t,zeta_t) in the space of (problems, solutions) pairs. The total number of Newton iterations is bounded in terms of the length of the lifted path in the condition metric

    The complexity and geometry of numerically solving polynomial systems

    Full text link
    These pages contain a short overview on the state of the art of efficient numerical analysis methods that solve systems of multivariate polynomial equations. We focus on the work of Steve Smale who initiated this research framework, and on the collaboration between Stephen Smale and Michael Shub, which set the foundations of this approach to polynomial system--solving, culminating in the more recent advances of Carlos Beltran, Luis Miguel Pardo, Peter Buergisser and Felipe Cucker

    Complexity of Sparse Polynomial Solving 2: Renormalization

    Full text link
    Renormalized homotopy continuation on toric varieties is introduced as a tool for solving sparse systems of polynomial equations, or sparse systems of exponential sums. The cost of continuation depends on a renormalized condition length, defined as a line integral of the condition number along all the lifted renormalized paths. The theory developed in this paper leads to a continuation algorithm tracking all the solutions between two generic systems with the same structure. The algorithm is randomized, in the sense that it follows a random path between the two systems. The probability of success is one. In order to produce an expected cost bound, several invariants depending solely of the supports of the equations are introduced. For instance, the mixed area is a quermassintegral that generalizes surface area in the same way that mixed volume generalizes ordinary volume. The facet gap measures for each direction in the 0-fan, how close is the supporting hyperplane to the nearest vertex. Once the supports are fixed, the expected cost depends on the input coefficients solely through two invariants: the renormalized toric condition number and the imbalance of the absolute values of the coefficients. This leads to a non-uniform complexity bound for polynomial solving in terms of those two invariants. Up to logarithms, the expected cost is quadratic in the first invariant and linear in the last one.Comment: 90 pages. Major revision from the previous versio
    corecore