16 research outputs found

    Locally Non-linear Embeddings for Extreme Multi-label Learning

    Full text link
    The objective in extreme multi-label learning is to train a classifier that can automatically tag a novel data point with the most relevant subset of labels from an extremely large label set. Embedding based approaches make training and prediction tractable by assuming that the training label matrix is low-rank and hence the effective number of labels can be reduced by projecting the high dimensional label vectors onto a low dimensional linear subspace. Still, leading embedding approaches have been unable to deliver high prediction accuracies or scale to large problems as the low rank assumption is violated in most real world applications. This paper develops the X-One classifier to address both limitations. The main technical contribution in X-One is a formulation for learning a small ensemble of local distance preserving embeddings which can accurately predict infrequently occurring (tail) labels. This allows X-One to break free of the traditional low-rank assumption and boost classification accuracy by learning embeddings which preserve pairwise distances between only the nearest label vectors. We conducted extensive experiments on several real-world as well as benchmark data sets and compared our method against state-of-the-art methods for extreme multi-label classification. Experiments reveal that X-One can make significantly more accurate predictions then the state-of-the-art methods including both embeddings (by as much as 35%) as well as trees (by as much as 6%). X-One can also scale efficiently to data sets with a million labels which are beyond the pale of leading embedding methods

    Online and Stochastic Gradient Methods for Non-decomposable Loss Functions

    Full text link
    Modern applications in sensitive domains such as biometrics and medicine frequently require the use of non-decomposable loss functions such as precision@k, F-measure etc. Compared to point loss functions such as hinge-loss, these offer much more fine grained control over prediction, but at the same time present novel challenges in terms of algorithm design and analysis. In this work we initiate a study of online learning techniques for such non-decomposable loss functions with an aim to enable incremental learning as well as design scalable solvers for batch problems. To this end, we propose an online learning framework for such loss functions. Our model enjoys several nice properties, chief amongst them being the existence of efficient online learning algorithms with sublinear regret and online to batch conversion bounds. Our model is a provable extension of existing online learning models for point loss functions. We instantiate two popular losses, prec@k and pAUC, in our model and prove sublinear regret bounds for both of them. Our proofs require a novel structural lemma over ranked lists which may be of independent interest. We then develop scalable stochastic gradient descent solvers for non-decomposable loss functions. We show that for a large family of loss functions satisfying a certain uniform convergence property (that includes prec@k, pAUC, and F-measure), our methods provably converge to the empirical risk minimizer. Such uniform convergence results were not known for these losses and we establish these using novel proof techniques. We then use extensive experimentation on real life and benchmark datasets to establish that our method can be orders of magnitude faster than a recently proposed cutting plane method.Comment: 25 pages, 3 figures, To appear in the proceedings of the 28th Annual Conference on Neural Information Processing Systems, NIPS 201

    1-Bit Matrix Completion

    Full text link
    In this paper we develop a theory of matrix completion for the extreme case of noisy 1-bit observations. Instead of observing a subset of the real-valued entries of a matrix M, we obtain a small number of binary (1-bit) measurements generated according to a probability distribution determined by the real-valued entries of M. The central question we ask is whether or not it is possible to obtain an accurate estimate of M from this data. In general this would seem impossible, but we show that the maximum likelihood estimate under a suitable constraint returns an accurate estimate of M when ||M||_{\infty} <= \alpha, and rank(M) <= r. If the log-likelihood is a concave function (e.g., the logistic or probit observation models), then we can obtain this maximum likelihood estimate by optimizing a convex program. In addition, we also show that if instead of recovering M we simply wish to obtain an estimate of the distribution generating the 1-bit measurements, then we can eliminate the requirement that ||M||_{\infty} <= \alpha. For both cases, we provide lower bounds showing that these estimates are near-optimal. We conclude with a suite of experiments that both verify the implications of our theorems as well as illustrate some of the practical applications of 1-bit matrix completion. In particular, we compare our program to standard matrix completion methods on movie rating data in which users submit ratings from 1 to 5. In order to use our program, we quantize this data to a single bit, but we allow the standard matrix completion program to have access to the original ratings (from 1 to 5). Surprisingly, the approach based on binary data performs significantly better
    corecore