1,255 research outputs found

    Minimization for Generalized Boolean Formulas

    Full text link
    The minimization problem for propositional formulas is an important optimization problem in the second level of the polynomial hierarchy. In general, the problem is Sigma-2-complete under Turing reductions, but restricted versions are tractable. We study the complexity of minimization for formulas in two established frameworks for restricted propositional logic: The Post framework allowing arbitrarily nested formulas over a set of Boolean connectors, and the constraint setting, allowing generalizations of CNF formulas. In the Post case, we obtain a dichotomy result: Minimization is solvable in polynomial time or coNP-hard. This result also applies to Boolean circuits. For CNF formulas, we obtain new minimization algorithms for a large class of formulas, and give strong evidence that we have covered all polynomial-time cases

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    Pseudorandomness and the Minimum Circuit Size Problem

    Get PDF

    Going Meta on the Minimum Circuit Size Problem: How Hard Is It to Show How Hard Showing Hardness Is?

    Get PDF
    The Minimum Circuit Size Problem (MCSP) is a problem with a long history in computational complexity theory which has recently experienced a resurgence in attention. MCSP takes as input the description of a Boolean function f as a truth table as well as a size parameter s, and outputs whether there is a circuit that computes f of size ≤ s. It is of great interest whether MCSP is NP-complete, but there have been shown to be many technical obstacles to proving that it is. Most of these results come in the following form: If MCSP is NP-complete under a certain type of reduction, then we get a breakthrough in complexity theory that seems well beyond current techniques. These results indicate that it is unlikely we will be able to show MCSP is NP-complete under these kinds of reductions anytime soon. I seek to add to this line of work, in particular focusing on an approximation version of MCSP which is central to some of its connections to other areas of complexity theory, as well as some other variants on the problem. Let f indicate an n-ary Boolean function that thus has a truth table of size 2n. I have used the approach of Saks and Santhanam (2020) to prove that if on input f approximating MCSP within a factor superpolynomial in n is NP-complete under general polynomial-time Turing reductions, then E ⊈ P/poly (a dramatic circuit lower bound). This provides a barrier to Hirahara (2018)\u27s suggested program of using the NP-completeness of a 2(1-)n-approximation version of MCSP to show that if NP is hard in the worst case (P ≠ NP), it is also hard on average (i.e., to rule out Heuristica). However, using randomized reductions to do so remains potentially tractable. I also extend the results of Saks and Santhanam (2020) to what I define as Σk-MCSP and Q-MCSP, getting stronger circuit lower bounds, namely E ⊈ ΣkP/poly and E ⊈ PH/poly, just from their NP-hardness. Since Σk-MCSP and Q-MCSP seem to be harder problems than MCSP, at first glance one might think it would be easier to show that Σk-MCSP or Q-MCSP is NP-hard, but my results demonstrate that the opposite is true

    On the complexity of semantic self-minimization

    Get PDF
    Partial Kripke structures model only parts of a state space and so enable aggressive abstraction of systems prior to verifying them with respect to a formula of temporal logic. This partiality of models means that verifications may reply with true (all refinements satisfy the formula under check), false (no refinement satisfies the formula under check) or dont know. Generalized model checking is the most precise verification for such models (all dont know answers imply that some refinements satisfy the formula, some dont), but computationally expensive. A compositional model-checking algorithm for partial Kripke structures is efficient, sound (all answers true and false are truthful), but may lose precision by answering dont know instead of a factual true or false. Recent work has shown that such a loss of precision does not occur for this compositional algorithm for most practically relevant patterns of temporal logic formulas. Formulas that never lose precision in this manner are called semantically self-minimizing. In this paper we provide a systematic study of the complexity of deciding whether a formula of propositional logic, propositional modal logic or the propositional modal mu-calculus is semantically self-minimizing. © 2009 Elsevier B.V. All rights reserved
    • …
    corecore