8,369 research outputs found

    Learning DNF Expressions from Fourier Spectrum

    Full text link
    Since its introduction by Valiant in 1984, PAC learning of DNF expressions remains one of the central problems in learning theory. We consider this problem in the setting where the underlying distribution is uniform, or more generally, a product distribution. Kalai, Samorodnitsky and Teng (2009) showed that in this setting a DNF expression can be efficiently approximated from its "heavy" low-degree Fourier coefficients alone. This is in contrast to previous approaches where boosting was used and thus Fourier coefficients of the target function modified by various distributions were needed. This property is crucial for learning of DNF expressions over smoothed product distributions, a learning model introduced by Kalai et al. (2009) and inspired by the seminal smoothed analysis model of Spielman and Teng (2001). We introduce a new approach to learning (or approximating) a polynomial threshold functions which is based on creating a function with range [-1,1] that approximately agrees with the unknown function on low-degree Fourier coefficients. We then describe conditions under which this is sufficient for learning polynomial threshold functions. Our approach yields a new, simple algorithm for approximating any polynomial-size DNF expression from its "heavy" low-degree Fourier coefficients alone. Our algorithm greatly simplifies the proof of learnability of DNF expressions over smoothed product distributions. We also describe an application of our algorithm to learning monotone DNF expressions over product distributions. Building on the work of Servedio (2001), we give an algorithm that runs in time \poly((s \cdot \log{(s/\eps)})^{\log{(s/\eps)}}, n), where ss is the size of the target DNF expression and \eps is the accuracy. This improves on \poly((s \cdot \log{(ns/\eps)})^{\log{(s/\eps)} \cdot \log{(1/\eps)}}, n) bound of Servedio (2001).Comment: Appears in Conference on Learning Theory (COLT) 201

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}

    Discrete Spectra of Semirelativistic Hamiltonians

    Get PDF
    We review various attempts to localize the discrete spectra of semirelativistic Hamiltonians of the form H = \beta \sqrt{m^2 + p^2} + V(r) (w.l.o.g. in three spatial dimensions) as entering, for instance, in the spinless Salpeter equation. Every Hamiltonian in this class of operators consists of the relativistic kinetic energy \beta \sqrt{m^2 + p^2} (where \beta > 0 allows for the possibility of more than one particles of mass m) and a spherically symmetric attractive potential V(r), r = |x|. In general, accurate eigenvalues of a nonlocal Hamiltonian operator can only be found by the use of a numerical approximation procedure. Our main emphasis, however, is on the derivation of rigorous semi-analytical expressions for both upper and lower bounds to the energy levels of such operators. We compare the bounds obtained within different approaches and present relationships existing between the bounds.Comment: 21 pages, 3 figure
    corecore