110 research outputs found

    Quantum Algorithms for Learning and Testing Juntas

    Full text link
    In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: - whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; - with no access to any classical or quantum membership ("black-box") queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; - which require only a few quantum examples but possibly many classical random examples (which are considered quite "cheap" relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: - We give an algorithm for testing k-juntas to accuracy ϵ\epsilon that uses O(k/ϵ)O(k/\epsilon) quantum examples. This improves on the number of examples used by the best known classical algorithm. - We establish the following lower bound: any FS-based k-junta testing algorithm requires Ω(k)\Omega(\sqrt{k}) queries. - We give an algorithm for learning kk-juntas to accuracy ϵ\epsilon that uses O(ϵ1klogk)O(\epsilon^{-1} k\log k) quantum examples and O(2klog(1/ϵ))O(2^k \log(1/\epsilon)) random examples. We show that this learning algorithms is close to optimal by giving a related lower bound.Comment: 15 pages, 1 figure. Uses synttree package. To appear in Quantum Information Processin

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [1,1][-1,1]-valued dd-resilient function in 1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between 1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that 1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}

    A Strong Composition Theorem for Junta Complexity and the Boosting of Property Testers

    Full text link
    We prove a strong composition theorem for junta complexity and show how such theorems can be used to generically boost the performance of property testers. The ε\varepsilon-approximate junta complexity of a function ff is the smallest integer rr such that ff is ε\varepsilon-close to a function that depends only on rr variables. A strong composition theorem states that if ff has large ε\varepsilon-approximate junta complexity, then gfg \circ f has even larger ε\varepsilon'-approximate junta complexity, even for εε\varepsilon' \gg \varepsilon. We develop a fairly complete understanding of this behavior, proving that the junta complexity of gfg \circ f is characterized by that of ff along with the multivariate noise sensitivity of gg. For the important case of symmetric functions gg, we relate their multivariate noise sensitivity to the simpler and well-studied case of univariate noise sensitivity. We then show how strong composition theorems yield boosting algorithms for property testers: with a strong composition theorem for any class of functions, a large-distance tester for that class is immediately upgraded into one for small distances. Combining our contributions yields a booster for junta testers, and with it new implications for junta testing. This is the first boosting-type result in property testing, and we hope that the connection to composition theorems adds compelling motivation to the study of both topics.Comment: 44 pages, 1 figure, FOCS 202

    A note on quantum algorithms and the minimal degree of epsilon-error polynomials for symmetric functions

    Full text link
    The degrees of polynomials representing or approximating Boolean functions are a prominent tool in various branches of complexity theory. Sherstov recently characterized the minimal degree deg_{\eps}(f) among all polynomials (over the reals) that approximate a symmetric function f:{0,1}^n-->{0,1} up to worst-case error \eps: deg_{\eps}(f) = ~\Theta(deg_{1/3}(f) + \sqrt{n\log(1/\eps)}). In this note we show how a tighter version (without the log-factors hidden in the ~\Theta-notation), can be derived quite easily using the close connection between polynomials and quantum algorithms.Comment: 7 pages LaTeX. 2nd version: corrected a few small inaccuracie
    corecore