14,748 research outputs found

    Statistical mechanical foundations of power-law distributions

    Full text link
    The foundations of the Boltzmann-Gibbs (BG) distributions for describing equilibrium statistical mechanics of systems are examined. Broadly, they fall into: (i) probabilistic paaroaches based on the principle of equal a priori probability (counting technique and method of steepest descents), law of large numbers, or the state density considerations and (ii) a variational scheme -- maximum entropy principle (due to Gibbs and Jaynes) subject to certain constraints. A minimum set of requirements on each of these methods are briefly pointed out: in the first approach, the function space and the counting algorithm while in the second, "additivity" property of the entropy with respect to the composition of statistically independent systems. In the past few decades, a large number of systems, which are not necessarily in thermodynamic equilibrium (such as glasses, for example), have been found to display power-law distributions, which are not describable by the above-mentioned methods. In this paper, parallel to all the inquiries underlying the BG program described above are given in a brief form. In particular, in the probabilistic derivations, one employs a different function space and one gives up "additivity" in the variational scheme with a different form for the entropy. The requirement of stability makes the entropy choice to be that proposed by Tsallis. From this a generalized thermodynamic description of the system in a quasi-equilibrium state is derived. A brief account of a unified consistent formalism associated with systems obeying power-law distributions precursor to the exponential form associated with thermodynamic equilibrium of systems is presented here.Comment: 19 pages, no figures. Invited talk at Anomalous Distributions, Nonlinear Dynamics and Nonextensivity, Santa Fe, USA, November 6-9, 200

    Convex Relaxations of SE(2) and SE(3) for Visual Pose Estimation

    Get PDF
    This paper proposes a new method for rigid body pose estimation based on spectrahedral representations of the tautological orbitopes of SE(2)SE(2) and SE(3)SE(3). The approach can use dense point cloud data from stereo vision or an RGB-D sensor (such as the Microsoft Kinect), as well as visual appearance data. The method is a convex relaxation of the classical pose estimation problem, and is based on explicit linear matrix inequality (LMI) representations for the convex hulls of SE(2)SE(2) and SE(3)SE(3). Given these representations, the relaxed pose estimation problem can be framed as a robust least squares problem with the optimization variable constrained to these convex sets. Although this formulation is a relaxation of the original problem, numerical experiments indicate that it is indeed exact - i.e. its solution is a member of SE(2)SE(2) or SE(3)SE(3) - in many interesting settings. We additionally show that this method is guaranteed to be exact for a large class of pose estimation problems.Comment: ICRA 2014 Preprin

    On the impossibility of coin-flipping in generalized probabilistic theories via discretizations of semi-infinite programs

    Full text link
    Coin-flipping is a fundamental cryptographic task where a spatially separated Alice and Bob wish to generate a fair coin-flip over a communication channel. It is known that ideal coin-flipping is impossible in both classical and quantum theory. In this work, we give a short proof that it is also impossible in generalized probabilistic theories under the Generalized No-Restriction Hypothesis. Our proof relies crucially on a formulation of cheating strategies as semi-infinite programs, i.e., cone programs with infinitely many constraints. This introduces a new formalism which may be of independent interest to the quantum community

    Exploiting Social Network Structure for Person-to-Person Sentiment Analysis

    Full text link
    Person-to-person evaluations are prevalent in all kinds of discourse and important for establishing reputations, building social bonds, and shaping public opinion. Such evaluations can be analyzed separately using signed social networks and textual sentiment analysis, but this misses the rich interactions between language and social context. To capture such interactions, we develop a model that predicts individual A's opinion of individual B by synthesizing information from the signed social network in which A and B are embedded with sentiment analysis of the evaluative texts relating A to B. We prove that this problem is NP-hard but can be relaxed to an efficiently solvable hinge-loss Markov random field, and we show that this implementation outperforms text-only and network-only versions in two very different datasets involving community-level decision-making: the Wikipedia Requests for Adminship corpus and the Convote U.S. Congressional speech corpus
    • …
    corecore