6,856 research outputs found

    On the ethnic classification of Pakistani face using deep learning

    Get PDF

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Improving elevation perception with a tool for image-guided head-related transfer function selection

    Get PDF
    This paper proposes an image-guided HRTF selection procedure that exploits the relation between features of the pinna shape and HRTF notches. Using a 2D image of a subject's pinna, the procedure selects from a database the HRTF set that best fits the anthropometry of that subject. The proposed procedure is designed to be quickly applied and easy to use for a user without previous knowledge on binaural audio technologies. The entire process is evaluated by means of an auditory model for sound localization in the mid-sagittal plane available from previous literature. Using virtual subjects from a HRTF database, a virtual experiment is implemented to assess the vertical localization performance of the database subjects when they are provided with HRTF sets selected by the proposed procedure. Results report a statistically significant improvement in predictions of localization performance for selected HRTFs compared to KEMAR HRTF which is a commercial standard in many binaural audio solutions; moreover, the proposed analysis provides useful indications to refine the perceptually-motivated metrics that guides the selection

    On Body Mass Index Analysis from Human Visual Appearance

    Get PDF
    In the past few decades, overweight and obesity are spreading widely like an epidemic. Generally, a person is considered overweight by body mass index (BMI). In addition to a body fat measurement, BMI is also a risk factor for many diseases, such as cardiovascular diseases, cancers and diabetes, etc. Therefore, BMI is important for personal health monitoring and medical research. Currently, BMI is measured in person with special devices. It is an urgent demand to explore conveniently preventive tools. This work investigates the feasibility of analyzing BMI from human visual appearances, including 2-dimensional (2D)/3-dimensional (3D) body and face data. Motivated by health science studies which have shown that anthropometric measures, such as waist-hip ratio, waist circumference, etc., are indicators for obesity, we analyze body weight from frontal view human body images. A framework is developed for body weight analysis from body images, along with the computation methods of five anthropometric features for body weight characterization. Then, we study BMI estimation from the 3D data by measuring the correlation between the estimated body volume and BMIs, and develop an efficient BMI computation method which consists of body weight and height estimation from normally dressed people in 3D space. We also intensively study BMI estimation from frontal view face images via two key aspects: facial representation extracting and BMI estimator learning. First, we investigate the visual BMI estimation problem from the aspect of the characteristics and performance of different facial representation extracting methods by three designed experiments. Then we study visual BMI estimation from facial images by a two-stage learning framework. BMI related facial features are learned in the first stage. To address the ambiguity of BMI labels, a label distribution based BMI estimator is proposed for the second stage. The experimental results show that this framework improves the performance step by step. Finally, to address the challenges caused by BMI data and labels, we integrate feature learning and estimator learning in one convolutional neural network (CNN). A label assignment matching scheme is proposed which successfully achieves an improvement in BMI estimation from face images

    Health requirements for advanced coal extraction systems

    Get PDF
    Health requirements were developed as long range goals for future advanced coal extraction systems which would be introduced into the market in the year 2000. The goal of the requirements is that underground coal miners work in an environment that is as close as possible to the working conditions of the general population, that they do not exceed mortality and morbidity rates resulting from lung diseases that are comparable to those of the general population, and that their working conditions comply as closely as possible to those of other industries as specified by OSHA regulations. A brief technique for evaluating whether proposed advanced systems meet these safety requirements is presented, as well as a discussion of the costs of respiratory disability compensation

    Ophthalmic Anthropometry among Rural Dwellers in Mashonaland Central Province, Zimbabwe

    Get PDF
    Introduction The measures of ophthalmic anthropometric parameters may vary among races and ethnic groups but are of immense importance in clinical diagnosis and management of oculo-visual defects. There is paucity of data on these measures among the Zimbabwean population. Purpose  The aim was to determine ophthalmic anthropometric parameters among rural dwellers in Zimbabwe. Methods Six ophthalmic anthropometric parameters including interpupillary distance (IPD), head width (HW), temple width (TW), length to bend (LTB), and apical radius were measured using a pupillometer, PD rule, Head width calipers, Fairbank facial gauge, and ABDO frame rule. Results A total of 471 participants aged 18 to 100 years (mean age = 55.13; SD± 17.33 years). Of the 471 participants, 206 (43.7%) were males and 265 (56.3%) were females. A mean interpupillary distance at far was 65.57 ± 4.80 mm, mean temple width of 12.49 ± 1.53 cm, mean head width of 13.61 ± 1.39 cm and a side length to bend of 10.24 ± 1.20 cm and the apical radius was 9.94 ± 1.37. There was a significant (P < 0.05) difference between the ophthalmic anthropometric parameters of males and females except for temple width and apical radius. Conclusion A narrower interpupillary distance but a wider temple width was observed among adult Zimbabweans. A significant difference in ophthalmic anthropometric parameters between males and females were observed except for temple width and apical radius. This should inform eyewear manufacturers and importers of frames on the facial and ocular parameters of Zimbabweans to improve the aesthetics and ensure a comfortable vision for wearers of already-made near vision spectacles for presbyopes. Rwanda J Med Health Sci 2021;4(1):99-11

    A Methodology for Extracting Human Bodies from Still Images

    Get PDF
    Monitoring and surveillance of humans is one of the most prominent applications of today and it is expected to be part of many future aspects of our life, for safety reasons, assisted living and many others. Many efforts have been made towards automatic and robust solutions, but the general problem is very challenging and remains still open. In this PhD dissertation we examine the problem from many perspectives. First, we study the performance of a hardware architecture designed for large-scale surveillance systems. Then, we focus on the general problem of human activity recognition, present an extensive survey of methodologies that deal with this subject and propose a maturity metric to evaluate them. One of the numerous and most popular algorithms for image processing found in the field is image segmentation and we propose a blind metric to evaluate their results regarding the activity at local regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies from challenging single images, which is the main contribution of the dissertation. Our methodology is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by our research in the fields of face, skin and hands detection. Experimental results and comparison with state-of-the-art methodologies demonstrate the success of our approach

    Recurrent Attention Models for Depth-Based Person Identification

    Get PDF
    We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification problem across days. Formulated as a reinforcement learning task, our model is based on a combination of convolutional and recurrent neural networks with the goal of identifying small, discriminative regions indicative of human identity. We demonstrate that our model produces state-of-the-art results on several published datasets given only depth images. We further study the robustness of our model towards viewpoint, appearance, and volumetric changes. Finally, we share insights gleaned from interpretable 2D, 3D, and 4D visualizations of our model's spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201
    • …
    corecore