4 research outputs found

    On the expected size of the 2d visibility complex

    Get PDF
    We study the expected size of the 2D visibility complex of randomly distributed objects in the plane. We prove that the asymptotic expected number of free bitangents (which correspond to 0-faces of the visibility complex) among unit discs (or polygons of bounded aspect ratio and similar size) is linear and exhibit bounds in terms of the density of the objects. We also make an experimental assessment of the size of the visibility complex for disjoint random unit discs. We provide experimental estimates of the onset of the linear behavior and of the asymptotic slope and y-intercept of the number of free bitangents in terms of the density of discs. Finally, we analyze the quality of our estimates in terms of the density of discs.

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore