665 research outputs found

    Keys and Armstrong databases in trees with restructuring

    Get PDF
    The definition of keys, antikeys, Armstrong-instances are extended to complex values in the presence of several constructors. These include tuple, list, set and a union constructor. Nested data structures are built using the various constructors in a tree-like fashion. The union constructor complicates all results and proofs significantly. The reason for this is that it comes along with non-trivial restructuring rules. Also, so-called counter attributes need to be introduced. It is shown that keys can be identified with closed sets of subattributes under a certain closure operator. Minimal keys correspond to closed sets minimal under set-wise containment. The existence of Armstrong databases for given minimal key systems is investigated. A sufficient condition is given and some necessary conditions are also exhibited. Weak keys can be obtained if functional dependency is replaced by weak functional dependency in the definition. It is shown, that this leads to the same concept. Strong keys are defined as principal ideals in the subattribute lattice. Characterization of antikeys for strong keys is given. Some numerical necessary conditions for the existence of Armstrong databases in case of degenerate keys are shown. This leads to the theory of bounded domain attributes. The complexity of the problem is shown through several examples

    Weak functional dependencies on trees with restructuring

    Get PDF
    We present an axiomatisation for weak functional dependencies, i.e. disjunctions of functional dependencies, in the presence of several constructors for complex values. The investigated constructors capture records, sets, multisets, lists, disjoint union and optionality, i.e. the complex values are indeed trees. The constructors cover the gist of all complex value data models including object oriented databases and XML. Functional and weak functional dependencies are expressed on a lattice of subattributes, which even carries the structure of a Brouwer algebra as long as the union-constructor is absent. Its presence, however, complicates all results and proofs significantly. The reason for this is that the union-constructor causes non-trivial restructuring rules to hold. In particular, if either the set- or the the union-constructor is absent, a subset of the rules is complete for the implication of ordinary functional dependencies, while in the general case no finite axiomatisation for functional dependencies exists

    Possible and certain SQL keys

    Get PDF

    Acta Cybernetica : Volume 20. Number 2.

    Get PDF

    Acta Cybernetica : Volume 18. Number 3.

    Get PDF

    XML documents schema design

    Get PDF
    The eXtensible Markup Language (XML) is fast emerging as the dominant standard for storing, describing and interchanging data among various systems and databases on the intemet. It offers schema such as Document Type Definition (DTD) or XML Schema Definition (XSD) for defining the syntax and structure of XML documents. To enable efficient usage of XML documents in any application in large scale electronic environment, it is necessary to avoid data redundancies and update anomalies. Redundancy and anomalies in XML documents can lead not only to higher data storage cost but also to increased costs for data transfer and data manipulation.To overcome this problem, this thesis proposes to establish a formal framework of XML document schema design. To achieve this aim, we propose a method to improve and simplify XML schema design by incorporating a conceptual model of the DTD with a theory of database normalization. A conceptual diagram, Graph-Document Type Definition (G-DTD) is proposed to describe the structure of XML documents at the schema level. For G- DTD itself, we define a structure which incorporates attributes, simple elements, complex elements, and relationship types among them. Furthermore, semantic constraints are also precisely defined in order to capture semantic meanings among the defined XML objects.In addition, to provide a guideline to a well-designed schema for XML documents, we propose a set of normal forms for G-DTD on the basis of rules proposed by Arenas and Libkin and Lv. et al. The corresponding normalization rules to transform from a G- DTD into a normal form schema are also discussed. A case study is given to illustrate the applicability of the concept. As a result, we found that the new normal forms are more concise and practical, in particular as they allow the user to find an 'optimal' structure of XML elements/attributes at the schema level. To prove that our approach is applicable for the database designer, we develop a prototype of XML document schema design using a Z formal specification language. Finally, using the same case study, this formal specification is tested to check for correctness and consistency of the specification. Thus, this gives a confidence that our prototype can be implemented successfully to generate an automatic XML schema design

    Acta Cybernetica : Volume 17. Number 1.

    Get PDF

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    Coherent Reaction

    Get PDF
    Side effects are both the essence and bane of imperative programming. The programmer must carefully coordinate actions to manage their side effects upon each other. Such coordination is complex, error-prone, and fragile. Coherent reaction is a new model of change-driven computation that coordinates effects automatically. State changes trigger events called reactions that in turn change other states. A coherent execution order is one in which each reaction executes before any others that are affected by its changes. A coherent order is discovered iteratively by detecting incoherencies as they occur and backtracking their effects. Unlike alternative solutions, much of the power of imperative programming is retained, as is the common sense notion of mutable state. Automatically coordinating actions lets the programmer express what to do, not when to do it. Coherent reactions are embodied in the Coherence language, which is specialized for interactive applications like those common on the desktop and web. The fundamental building block of Coherence is the dynamically typed mutable tree. The fundamental abstraction mechanism is the virtual tree, whose value is lazily computed, and whose behavior is generated by coherent reactions
    • …
    corecore