2,282 research outputs found

    Approximate Queueing Network Analysis of Patient Treatment Times

    No full text
    We develop an approximate generating function analysis (AGFA) technique which approximates the Laplace transform of the probability density function of customer response time in networks of queues with class-based priorities. From the approximated Laplace transform, we derive the first two moments of customer response time. This technique is applied to a model of a large hospitals Accident and Emergency department for which we obtain the mean and standard deviation of total patient service time. We experiment with different patient-handling priority schemes and compare the AGFA moments with the results from a discrete event simulation. Copyright 2007 ICST

    Dynamic Service Rate Control for a Single Server Queue with Markov Modulated Arrivals

    Full text link
    We consider the problem of service rate control of a single server queueing system with a finite-state Markov-modulated Poisson arrival process. We show that the optimal service rate is non-decreasing in the number of customers in the system; higher congestion rates warrant higher service rates. On the contrary, however, we show that the optimal service rate is not necessarily monotone in the current arrival rate. If the modulating process satisfies a stochastic monotonicity property the monotonicity is recovered. We examine several heuristics and show where heuristics are reasonable substitutes for the optimal control. None of the heuristics perform well in all the regimes. Secondly, we discuss when the Markov-modulated Poisson process with service rate control can act as a heuristic itself to approximate the control of a system with a periodic non-homogeneous Poisson arrival process. Not only is the current model of interest in the control of Internet or mobile networks with bursty traffic, but it is also useful in providing a tractable alternative for the control of service centers with non-stationary arrival rates.Comment: 32 Pages, 7 Figure

    Approximate performability and dependability analysis using generalized stochastic Petri Nets

    Get PDF
    Since current day fault-tolerant and distributed computer and communication systems tend to be large and complex, their corresponding performability models will suffer from the same characteristics. Therefore, calculating performability measures from these models is a difficult and time-consuming task.\ud \ud To alleviate the largeness and complexity problem to some extent we use generalized stochastic Petri nets to describe to models and to automatically generate the underlying Markov reward models. Still however, many models cannot be solved with the current numerical techniques, although they are conveniently and often compactly described.\ud \ud In this paper we discuss two heuristic state space truncation techniques that allow us to obtain very good approximations for the steady-state performability while only assessing a few percent of the states of the untruncated model. For a class of reversible models we derive explicit lower and upper bounds on the exact steady-state performability. For a much wider class of models a truncation theorem exists that allows one to obtain bounds for the error made in the truncation. We discuss this theorem in the context of approximate performability models and comment on its applicability. For all the proposed truncation techniques we present examples showing their usefulness

    On generalized processor sharing and objective functions: analytical framework

    Get PDF
    Today, telecommunication networks host a wide range of heterogeneous services. Some demand strict delay minima, while others only need a best-effort kind of service. To achieve service differentiation, network traffic is partitioned in several classes which is then transmitted according to a flexible and fair scheduling mechanism. Telecommunication networks can, for instance, use an implementation of Generalized Processor Sharing (GPS) in its internal nodes to supply an adequate Quality of Service to each class. GPS is flexible and fair, but also notoriously hard to study analytically. As a result, one has to resort to simulation or approximation techniques to optimize GPS for some given objective function. In this paper, we set up an analytical framework for two-class discrete-time probabilistic GPS which allows to optimize the scheduling for a generic objective function in terms of the mean unfinished work of both classes without the need for exact results or estimations/approximations for these performance characteristics. This framework is based on results of strict priority scheduling, which can be regarded as a special case of GPS, and some specific unfinished-work properties in two-class GPS. We also apply our framework on a popular type of objective functions, i.e., convex combinations of functions of the mean unfinished work. Lastly, we incorporate the framework in an algorithm to yield a faster and less computation-intensive result for the optimum of an objective function

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    Modeling Conveyor Merges in Zone Picking Systems

    Get PDF
    In many order picking and sorting systems conveyors are used to transport products through the system and to merge multiple flows of products into one single flow. In practice, conveyor merges are potential points of congestion, and consequently can lead to a reduced throughput. In this paper, we study merges in a zone picking system. The performance of a zone picking system is, for a large part, determined by the performance of the merge locations. We model the system as a closed queueing network that describes the conveyor, the pick zones, and the merge locations. The resulting model does not have a product-form stationary queue-length distribution. This makes exact analysis practically infeasible. Therefore, we approximate the behavior of the model using the aggregation technique, where the resulting subnetworks are solved using matrix-geometric methods. We show that the approximation model allows us to determine very accurate estimates of the throughput when compared with simulation. Furthermore, our model is in particular well suited to evaluate many design alternatives, in terms of number of zones, zone buffer lengths, and maximum number of totes in the systems. It also can be used to determine the maximum throughput capability of the system and, if needed, modify the system in order to meet target performance levels

    Optimization of multiclass queueing networks : polyhedral and nonlinear characterization of achievable performance

    Get PDF
    Includes bibliographical references (p. 48-50).Supported by the National Science Foundation. ECS-8552419 Supported by the Presidential Young Investigator Award. DDM-9158118 Supported by the Draper Laboratory and by the Leaders for Manufacturing Program at MIT. Supported by the ARO. DAAL03-92-G0309Dimitris Bertsimas, Ioannis Ch. Paschalidis, John N. Tsitsiklis
    corecore