100,285 research outputs found

    Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping

    Get PDF
    Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio-temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high-curvature transitions between activated and non-activated brain regions. In this paper, we introduce a class of inhomogeneous Markov random fields (MRF) with spatially adaptive interaction weights in a space-varying coefficient model for fMRI data. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, is carried out through efficient MCMC simulation. An application to fMRI data from a visual stimulation experiment demonstrates the performance of our approach in comparison to Gaussian and robustified non-Gaussian Markov random field models

    An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation

    No full text
    In statistical model based texture feature extraction, features based on spatially varying parameters achievehigher discriminative performances compared to spatially constant parameters. In this paper we formulate anovel Bayesian framework which achieves texture characterization by spatially varying parameters based onGaussian Markov random fields. The parameter estimation is carried out by Metropolis-Hastings algorithm.The distributions of estimated spatially varying parameters are then used as successful discriminant texturefeatures in classification and segmentation. Results show that novel features outperform traditional GaussianMarkov random field texture features which use spatially constant parameters. These features capture bothpixel spatial dependencies and structural properties of a texture giving improved texture features for effectivetexture classification and segmentation

    Hidden Markov random field and FRAME modelling for TCA-image analysis

    Get PDF
    Tooth Cementum Annulation (TCA) is an age estimation method carried out on thin cross sections of the root of human teeth. Age is computed by adding the tooth eruption age to the count of annual incremental lines that are called tooth rings and appear in the cementum band. Algorithms to denoise and segment the digital image of the tooth section are considered a crucial step towards computer-assisted TCA. The approach pursued in this paper relies on modelling the images as hidden Markov random fields, where gray values are assumed to be pixelwise conditionally independent and normally distributed, given a hidden random field of labels. These unknown labels have to be estimated to segment the image. To account for long-range dependence among the observed values and for periodicity in the placement of tooth rings, the Gibbsian label distribution is specified by a potential function that incorporates macro-features of the TCA-image (a FRAME model). Estimation of the model parameters is carried out by an EM-algorithm that exploits the mean field approximation of the label distribution. Segmentation is based on the predictive distribution of the labels given the observed gray values. KEYWORDS: EM, FRAME, Gibbs distribution, (hidden) Markov random field, mean field approximation, TCA

    Unsupervised Texture Segmentation using Active Contours and Local Distributions of Gaussian Markov Random Field Parameters

    No full text
    In this paper, local distributions of low order Gaussian Markov Random Field (GMRF) model parameters are proposed as texture features for unsupervised texture segmentation.Instead of using model parameters as texture features, we exploit the variations in parameter estimates found by model fitting in local region around the given pixel. Thespatially localized estimation process is carried out by maximum likelihood method employing a moderately small estimation window which leads to modeling of partial texturecharacteristics belonging to the local region. Hence significant fluctuations occur in the estimates which can be related to texture pattern complexity. The variations occurred in estimates are quantified by normalized local histograms. Selection of an accurate window size for histogram calculation is crucial and is achieved by a technique based on the entropy of textures. These texture features expand the possibility of using relativelylow order GMRF model parameters for segmenting fine to very large texture patterns and offer lower computational cost. Small estimation windows result in better boundarylocalization. Unsupervised segmentation is performed by integrated active contours, combining the region and boundary information. Experimental results on statistical and structural component textures show improved discriminative ability of the features compared to some recent algorithms in the literature

    Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d

    Get PDF
    Markov random fields on two-dimensional lattices are behind many image analysis methodologies. mrf2d provides tools for statistical inference on a class of discrete stationary Markov random field models with pairwise interaction, which includes many of the popular models such as the Potts model and texture image models. The package introduces representations of dependence structures and parameters, visualization functions and efficient (C++-based) implementations of sampling algorithms, common estimation methods and other key features of the model, providing a useful framework to implement algorithms and working with the model in general. This paper presents a description and details of the package, as well as some reproducible examples of usage

    Accuracy of MAP segmentation with hidden Potts and Markov mesh prior models via Path Constrained Viterbi Training, Iterated Conditional Modes and Graph Cut based algorithms

    Full text link
    In this paper, we study statistical classification accuracy of two different Markov field environments for pixelwise image segmentation, considering the labels of the image as hidden states and solving the estimation of such labels as a solution of the MAP equation. The emission distribution is assumed the same in all models, and the difference lays in the Markovian prior hypothesis made over the labeling random field. The a priori labeling knowledge will be modeled with a) a second order anisotropic Markov Mesh and b) a classical isotropic Potts model. Under such models, we will consider three different segmentation procedures, 2D Path Constrained Viterbi training for the Hidden Markov Mesh, a Graph Cut based segmentation for the first order isotropic Potts model, and ICM (Iterated Conditional Modes) for the second order isotropic Potts model. We provide a unified view of all three methods, and investigate goodness of fit for classification, studying the influence of parameter estimation, computational gain, and extent of automation in the statistical measures Overall Accuracy, Relative Improvement and Kappa coefficient, allowing robust and accurate statistical analysis on synthetic and real-life experimental data coming from the field of Dental Diagnostic Radiography. All algorithms, using the learned parameters, generate good segmentations with little interaction when the images have a clear multimodal histogram. Suboptimal learning proves to be frail in the case of non-distinctive modes, which limits the complexity of usable models, and hence the achievable error rate as well. All Matlab code written is provided in a toolbox available for download from our website, following the Reproducible Research Paradigm
    • ā€¦
    corecore