338 research outputs found

    On Trapping Sets and Guaranteed Error Correction Capability of LDPC Codes and GLDPC Codes

    Full text link
    The relation between the girth and the guaranteed error correction capability of γ\gamma-left regular LDPC codes when decoded using the bit flipping (serial and parallel) algorithms is investigated. A lower bound on the size of variable node sets which expand by a factor of at least 3γ/43 \gamma/4 is found based on the Moore bound. An upper bound on the guaranteed error correction capability is established by studying the sizes of smallest possible trapping sets. The results are extended to generalized LDPC codes. It is shown that generalized LDPC codes can correct a linear fraction of errors under the parallel bit flipping algorithm when the underlying Tanner graph is a good expander. It is also shown that the bound cannot be improved when γ\gamma is even by studying a class of trapping sets. A lower bound on the size of variable node sets which have the required expansion is established.Comment: 17 pages. Submitted to IEEE Transactions on Information Theory. Parts of this work have been accepted for presentation at the International Symposium on Information Theory (ISIT'08) and the International Telemetering Conference (ITC'08

    Two-Bit Bit Flipping Decoding of LDPC Codes

    Full text link
    In this paper, we propose a new class of bit flipping algorithms for low-density parity-check (LDPC) codes over the binary symmetric channel (BSC). Compared to the regular (parallel or serial) bit flipping algorithms, the proposed algorithms employ one additional bit at a variable node to represent its "strength." The introduction of this additional bit increases the guaranteed error correction capability by a factor of at least 2. An additional bit can also be employed at a check node to capture information which is beneficial to decoding. A framework for failure analysis of the proposed algorithms is described. These algorithms outperform the Gallager A/B algorithm and the min-sum algorithm at much lower complexity. Concatenation of two-bit bit flipping algorithms show a potential to approach the performance of belief propagation (BP) decoding in the error floor region, also at lower complexity.Comment: 6 pages. Submitted to IEEE International Symposium on Information Theory 201

    Check-hybrid GLDPC Codes: Systematic Elimination of Trapping Sets and Guaranteed Error Correction Capability

    Full text link
    In this paper, we propose a new approach to construct a class of check-hybrid generalized low-density parity-check (CH-GLDPC) codes which are free of small trapping sets. The approach is based on converting some selected check nodes involving a trapping set into super checks corresponding to a 2-error correcting component code. Specifically, we follow two main purposes to construct the check-hybrid codes; first, based on the knowledge of the trapping sets of the global LDPC code, single parity checks are replaced by super checks to disable the trapping sets. We show that by converting specified single check nodes, denoted as critical checks, to super checks in a trapping set, the parallel bit flipping (PBF) decoder corrects the errors on a trapping set and hence eliminates the trapping set. The second purpose is to minimize the rate loss caused by replacing the super checks through finding the minimum number of such critical checks. We also present an algorithm to find critical checks in a trapping set of column-weight 3 LDPC code and then provide upper bounds on the minimum number of such critical checks such that the decoder corrects all error patterns on elementary trapping sets. Moreover, we provide a fixed set for a class of constructed check-hybrid codes. The guaranteed error correction capability of the CH-GLDPC codes is also studied. We show that a CH-GLDPC code in which each variable node is connected to 2 super checks corresponding to a 2-error correcting component code corrects up to 5 errors. The results are also extended to column-weight 4 LDPC codes. Finally, we investigate the eliminating of trapping sets of a column-weight 3 LDPC code using the Gallager B decoding algorithm and generalize the results obtained for the PBF for the Gallager B decoding algorithm
    • …
    corecore