14 research outputs found

    Downlink Training in Cell-Free Massive MIMO: A Blessing in Disguise

    Full text link
    Cell-free Massive MIMO (multiple-input multiple-output) refers to a distributed Massive MIMO system where all the access points (APs) cooperate to coherently serve all the user equipments (UEs), suppress inter-cell interference and mitigate the multiuser interference. Recent works demonstrated that, unlike co-located Massive MIMO, the \textit{channel hardening} is, in general, less pronounced in cell-free Massive MIMO, thus there is much to benefit from estimating the downlink channel. In this study, we investigate the gain introduced by the downlink beamforming training, extending the previously proposed analysis to non-orthogonal uplink and downlink pilots. Assuming single-antenna APs, conjugate beamforming and independent Rayleigh fading channel, we derive a closed-form expression for the per-user achievable downlink rate that addresses channel estimation errors and pilot contamination both at the AP and UE side. The performance evaluation includes max-min fairness power control, greedy pilot assignment methods, and a comparison between achievable rates obtained from different capacity-bounding techniques. Numerical results show that downlink beamforming training, although increases pilot overhead and introduces additional pilot contamination, improves significantly the achievable downlink rate. Even for large number of APs, it is not fully efficient for the UE relying on the statistical channel state information for data decoding.Comment: Published in IEEE Transactions on Wireless Communications on August 14, 2019. {\copyright} 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Joint Design of Power Control and Access Point Scheduling for Uplink Cell-Free Massive MIMO Networks

    Full text link
    This work proposes a joint power control and access points (APs) scheduling algorithm for uplink cell-free massive multiple-input multiple-output (CF-mMIMO) networks without channel hardening assumption. Extensive studies have done on the joint optimization problem assuming the channel hardening. However, it has been reported that the channel hardening may not be validated in some CF-mMIMO environments. In particular, the existing Use-and-then-Forget (UatF) bound based on the channel hardening often seriously underestimates user rates in CF-mMIMO. Therefore, a new performance evaluation technique without resorting to the channel hardening is indispensable for accurate performance estimations. Motivated by this, we propose a new bound on the achievable rate of uplink CF-mMIMO. It is demonstrated that the proposed bound provides a more accurate performance estimate of CF-mMIMO than that of the existing UatF bound. The proposed bound also enables us to develop a joint power control and APs scheduling algorithm targeting at both improving fairness and reducing the resource between APs and a central processing unit (CPU). We conduct extensive performance evaluations and comparisons for systems designed with the proposed and existing algorithms. The comparisons show that a considerable performance improvement is achievable with the proposed algorithm even at reduced resource between APs and CPU.Comment: 30 pages, 7 Figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore