3,647 research outputs found

    Strong Forms of Stability from Flag Algebra Calculations

    Get PDF
    Given a hereditary family G\mathcal{G} of admissible graphs and a function λ(G)\lambda(G) that linearly depends on the statistics of order-κ\kappa subgraphs in a graph GG, we consider the extremal problem of determining λ(n,G)\lambda(n,\mathcal{G}), the maximum of λ(G)\lambda(G) over all admissible graphs GG of order nn. We call the problem perfectly BB-stable for a graph BB if there is a constant CC such that every admissible graph GG of order nCn\ge C can be made into a blow-up of BB by changing at most C(λ(n,G)λ(G))(n2)C(\lambda(n,\mathcal{G})-\lambda(G)){n\choose2} adjacencies. As special cases, this property describes all almost extremal graphs of order nn within o(n2)o(n^2) edges and shows that every extremal graph of order nn0n\ge n_0 is a blow-up of BB. We develop general methods for establishing stability-type results from flag algebra computations and apply them to concrete examples. In fact, one of our sufficient conditions for perfect stability is stated in a way that allows automatic verification by a computer. This gives a unifying way to obtain computer-assisted proofs of many new results.Comment: 44 pages; incorporates reviewers' suggestion

    If the Current Clique Algorithms are Optimal, so is Valiant's Parser

    Full text link
    The CFG recognition problem is: given a context-free grammar G\mathcal{G} and a string ww of length nn, decide if ww can be obtained from G\mathcal{G}. This is the most basic parsing question and is a core computer science problem. Valiant's parser from 1975 solves the problem in O(nω)O(n^{\omega}) time, where ω<2.373\omega<2.373 is the matrix multiplication exponent. Dozens of parsing algorithms have been proposed over the years, yet Valiant's upper bound remains unbeaten. The best combinatorial algorithms have mildly subcubic O(n3/log3n)O(n^3/\log^3{n}) complexity. Lee (JACM'01) provided evidence that fast matrix multiplication is needed for CFG parsing, and that very efficient and practical algorithms might be hard or even impossible to obtain. Lee showed that any algorithm for a more general parsing problem with running time O(Gn3ε)O(|\mathcal{G}|\cdot n^{3-\varepsilon}) can be converted into a surprising subcubic algorithm for Boolean Matrix Multiplication. Unfortunately, Lee's hardness result required that the grammar size be G=Ω(n6)|\mathcal{G}|=\Omega(n^6). Nothing was known for the more relevant case of constant size grammars. In this work, we prove that any improvement on Valiant's algorithm, even for constant size grammars, either in terms of runtime or by avoiding the inefficiencies of fast matrix multiplication, would imply a breakthrough algorithm for the kk-Clique problem: given a graph on nn nodes, decide if there are kk that form a clique. Besides classifying the complexity of a fundamental problem, our reduction has led us to similar lower bounds for more modern and well-studied cubic time problems for which faster algorithms are highly desirable in practice: RNA Folding, a central problem in computational biology, and Dyck Language Edit Distance, answering an open question of Saha (FOCS'14)

    Asymptotic Structure of Graphs with the Minimum Number of Triangles

    Get PDF
    We consider the problem of minimizing the number of triangles in a graph of given order and size and describe the asymptotic structure of extremal graphs. This is achieved by characterizing the set of flag algebra homomorphisms that minimize the triangle density.Comment: 22 pages; 2 figure
    corecore