1,194 research outputs found

    Bundle methods for regularized risk minimization with applications to robust learning

    Get PDF
    Supervised learning in general and regularized risk minimization in particular is about solving optimization problem which is jointly defined by a performance measure and a set of labeled training examples. The outcome of learning, a model, is then used mainly for predicting the labels for unlabeled examples in the testing environment. In real-world scenarios: a typical learning process often involves solving a sequence of similar problems with different parameters before a final model is identified. For learning to be successful, the final model must be produced timely, and the model should be robust to (mild) irregularities in the testing environment. The purpose of this thesis is to investigate ways to speed up the learning process and improve the robustness of the learned model. We first develop a batch convex optimization solver specialized to the regularized risk minimization based on standard bundle methods. The solver inherits two main properties of the standard bundle methods. Firstly, it is capable of solving both differentiable and non-differentiable problems, hence its implementation can be reused for different tasks with minimal modification. Secondly, the optimization is easily amenable to parallel and distributed computation settings; this makes the solver highly scalable in the number of training examples. However, unlike the standard bundle methods, the solver does not have extra parameters which need careful tuning. Furthermore, we prove that the solver has faster convergence rate. In addition to that, the solver is very efficient in computing approximate regularization path and model selection. We also present a convex risk formulation for incorporating invariances and prior knowledge into the learning problem. This formulation generalizes many existing approaches for robust learning in the setting of insufficient or noisy training examples and covariate shift. Lastly, we extend a non-convex risk formulation for binary classification to structured prediction. Empirical results show that the model obtained with this risk formulation is robust to outliers in the training examples

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    Data-driven satisficing measure and ranking

    Full text link
    We propose an computational framework for real-time risk assessment and prioritizing for random outcomes without prior information on probability distributions. The basic model is built based on satisficing measure (SM) which yields a single index for risk comparison. Since SM is a dual representation for a family of risk measures, we consider problems constrained by general convex risk measures and specifically by Conditional value-at-risk. Starting from offline optimization, we apply sample average approximation technique and argue the convergence rate and validation of optimal solutions. In online stochastic optimization case, we develop primal-dual stochastic approximation algorithms respectively for general risk constrained problems, and derive their regret bounds. For both offline and online cases, we illustrate the relationship between risk ranking accuracy with sample size (or iterations).Comment: 26 Pages, 6 Figure
    corecore