3 research outputs found

    On the Design and Analysis of Stream Ciphers

    Get PDF
    This thesis presents new cryptanalysis results for several different stream cipher constructions. In addition, it also presents two new stream ciphers, both based on the same design principle. The first attack is a general attack targeting a nonlinear combiner. A new class of weak feedback polynomials for linear feedback shift registers is identified. By taking samples corresponding to the linear recurrence relation, it is shown that if the feedback polynomial has taps close together an adversary to take advantage of this by considering the samples in a vector form. Next, the self-shrinking generator and the bit-search generator are analyzed. Both designs are based on irregular decimation. For the self-shrinking generator, it is shown how to recover the internal state knowing only a few keystream bits. The complexity of the attack is similar to the previously best known but uses a negligible amount of memory. An attack requiring a large keystream segment is also presented. It is shown to be asymptotically better than all previously known attacks. For the bit-search generator, an algorithm that recovers the internal state is given as well as a distinguishing attack that can be very efficient if the feedback polynomial is not carefully chosen. Following this, two recently proposed stream cipher designs, Pomaranch and Achterbahn, are analyzed. Both stream ciphers are designed with small hardware complexity in mind. For Pomaranch Version 2, based on an improvement of previous analysis of the design idea, a key recovery attack is given. Also, for all three versions of Pomaranch, a distinguishing attack is given. For Achterbahn, it is shown how to recover the key of the latest version, known as Achterbahn-128/80. The last part of the thesis introduces two new stream cipher designs, namely Grain and Grain-128. The ciphers are designed to be very small in hardware. They also have the distinguishing feature of allowing users to increase the speed of the ciphers by adding extra hardware

    A fast and light stream cipher for smartphones

    Full text link
    We present a stream cipher based on a chaotic dynamical system. Using a chaotic trajectory sampled under certain rules in order to avoid any attempt to reconstruct the original one, we create a binary pseudo-random keystream that can only be exactly reproduced by someone that has fully knowledge of the communication system parameters formed by a transmitter and a receiver and sharing the same initial conditions. The plaintext is XORed with the keystream creating the ciphertext, the encrypted message. This keystream passes the NISTs randomness test and has been implemented in a videoconference App for smartphones, in order to show the fast and light nature of the proposed encryption system

    Selected Cryptographic Methods for Securing Low-End Devices

    Full text link
    We consider in this thesis the security goals confidentiality of messages and authenticity of entities in electronic communication with special focus on applications in environments with restricted computational power, e.g., RFID-tags or mobile phones. We introduce the concept of stream ciphers, describe and analyze their most important building blocks, analyze their security features, and indicate ways to improve their resistance against certain types of attacks. In the context of entity authentication, we describe special protocols based on randomly choosing elements from a secret set of linear vector spaces and relate the security of these protocols to the hardness of a certain learning problem
    corecore