17 research outputs found

    On the Delay of Network Coding over Line Networks

    Get PDF
    We analyze a simple network where a source and a receiver are connected by a line of erasure channels of different reliabilities. Recent prior work has shown that random linear network coding can achieve the min-cut capacity and therefore the asymptotic rate is determined by the worst link of the line network. In this paper we investigate the delay for transmitting a batch of packets, which is a function of all the erasure probabilities and the number of packets in the batch. We show a monotonicity result on the delay function and derive simple expressions which characterize the expected delay behavior of line networks. Further, we use a martingale bounded differences argument to show that the actual delay is tightly concentrated around its expectation

    When Queueing Meets Coding: Optimal-Latency Data Retrieving Scheme in Storage Clouds

    Full text link
    In this paper, we study the problem of reducing the delay of downloading data from cloud storage systems by leveraging multiple parallel threads, assuming that the data has been encoded and stored in the clouds using fixed rate forward error correction (FEC) codes with parameters (n, k). That is, each file is divided into k equal-sized chunks, which are then expanded into n chunks such that any k chunks out of the n are sufficient to successfully restore the original file. The model can be depicted as a multiple-server queue with arrivals of data retrieving requests and a server corresponding to a thread. However, this is not a typical queueing model because a server can terminate its operation, depending on when other servers complete their service (due to the redundancy that is spread across the threads). Hence, to the best of our knowledge, the analysis of this queueing model remains quite uncharted. Recent traces from Amazon S3 show that the time to retrieve a fixed size chunk is random and can be approximated as a constant delay plus an i.i.d. exponentially distributed random variable. For the tractability of the theoretical analysis, we assume that the chunk downloading time is i.i.d. exponentially distributed. Under this assumption, we show that any work-conserving scheme is delay-optimal among all on-line scheduling schemes when k = 1. When k > 1, we find that a simple greedy scheme, which allocates all available threads to the head of line request, is delay optimal among all on-line scheduling schemes. We also provide some numerical results that point to the limitations of the exponential assumption, and suggest further research directions.Comment: Original accepted by IEEE Infocom 2014, 9 pages. Some statements in the Infocom paper are correcte

    How Fast Can Dense Codes Achieve the Min-Cut Capacity of Line Networks?

    Full text link
    In this paper, we study the coding delay and the average coding delay of random linear network codes (dense codes) over line networks with deterministic regular and Poisson transmission schedules. We consider both lossless networks and networks with Bernoulli losses. The upper bounds derived in this paper, which are in some cases more general, and in some other cases tighter, than the existing bounds, provide a more clear picture of the speed of convergence of dense codes to the min-cut capacity of line networks.Comment: 15 pages, submitted to IEEE ISIT 201

    In-Order Delivery Delay of Transport Layer Coding

    Full text link
    A large number of streaming applications use reliable transport protocols such as TCP to deliver content over the Internet. However, head-of-line blocking due to packet loss recovery can often result in unwanted behavior and poor application layer performance. Transport layer coding can help mitigate this issue by helping to recover from lost packets without waiting for retransmissions. We consider the use of an on-line network code that inserts coded packets at strategic locations within the underlying packet stream. If retransmissions are necessary, additional coding packets are transmitted to ensure the receiver's ability to decode. An analysis of this scheme is provided that helps determine both the expected in-order packet delivery delay and its variance. Numerical results are then used to determine when and how many coded packets should be inserted into the packet stream, in addition to determining the trade-offs between reducing the in-order delay and the achievable rate. The analytical results are finally compared with experimental results to provide insight into how to minimize the delay of existing transport layer protocols

    TOFEC: Achieving Optimal Throughput-Delay Trade-off of Cloud Storage Using Erasure Codes

    Full text link
    Our paper presents solutions using erasure coding, parallel connections to storage cloud and limited chunking (i.e., dividing the object into a few smaller segments) together to significantly improve the delay performance of uploading and downloading data in and out of cloud storage. TOFEC is a strategy that helps front-end proxy adapt to level of workload by treating scalable cloud storage (e.g. Amazon S3) as a shared resource requiring admission control. Under light workloads, TOFEC creates more smaller chunks and uses more parallel connections per file, minimizing service delay. Under heavy workloads, TOFEC automatically reduces the level of chunking (fewer chunks with increased size) and uses fewer parallel connections to reduce overhead, resulting in higher throughput and preventing queueing delay. Our trace-driven simulation results show that TOFEC's adaptation mechanism converges to an appropriate code that provides the optimal delay-throughput trade-off without reducing system capacity. Compared to a non-adaptive strategy optimized for throughput, TOFEC delivers 2.5x lower latency under light workloads; compared to a non-adaptive strategy optimized for latency, TOFEC can scale to support over 3x as many requests

    Minimum cost mirror sites using network coding: Replication vs. coding at the source nodes

    Get PDF
    Content distribution over networks is often achieved by using mirror sites that hold copies of files or portions thereof to avoid congestion and delay issues arising from excessive demands to a single location. Accordingly, there are distributed storage solutions that divide the file into pieces and place copies of the pieces (replication) or coded versions of the pieces (coding) at multiple source nodes. We consider a network which uses network coding for multicasting the file. There is a set of source nodes that contains either subsets or coded versions of the pieces of the file. The cost of a given storage solution is defined as the sum of the storage cost and the cost of the flows required to support the multicast. Our interest is in finding the storage capacities and flows at minimum combined cost. We formulate the corresponding optimization problems by using the theory of information measures. In particular, we show that when there are two source nodes, there is no loss in considering subset sources. For three source nodes, we derive a tight upper bound on the cost gap between the coded and uncoded cases. We also present algorithms for determining the content of the source nodes.Comment: IEEE Trans. on Information Theory (to appear), 201
    corecore