1,736 research outputs found

    Improving Christofides' Algorithm for the s-t Path TSP

    Full text link
    We present a deterministic (1+sqrt(5))/2-approximation algorithm for the s-t path TSP for an arbitrary metric. Given a symmetric metric cost on n vertices including two prespecified endpoints, the problem is to find a shortest Hamiltonian path between the two endpoints; Hoogeveen showed that the natural variant of Christofides' algorithm is a 5/3-approximation algorithm for this problem, and this asymptotically tight bound in fact has been the best approximation ratio known until now. We modify this algorithm so that it chooses the initial spanning tree based on an optimal solution to the Held-Karp relaxation rather than a minimum spanning tree; we prove this simple but crucial modification leads to an improved approximation ratio, surpassing the 20-year-old barrier set by the natural Christofides' algorithm variant. Our algorithm also proves an upper bound of (1+sqrt(5))/2 on the integrality gap of the path-variant Held-Karp relaxation. The techniques devised in this paper can be applied to other optimization problems as well: these applications include improved approximation algorithms and improved LP integrality gap upper bounds for the prize-collecting s-t path problem and the unit-weight graphical metric s-t path TSP.Comment: 31 pages, 5 figure

    Spanning trees with many leaves: new extremal results and an improved FPT algorithm

    Get PDF
    We present two lower bounds for the maximum number of leaves in a spanning tree of a graph. For connected graphs without triangles, with minimum degree at least three, we show that a spanning tree with at least (n+4)/3 leaves exists, where n is the number of vertices of the graph. For connected graphs with minimum degree at least three, that contain D diamonds induced by vertices of degree three (a diamond is a K4 minus one edge), we show that a spanning tree exists with at least (2n-D+12)/7 leaves. The proofs use the fact that spanning trees with many leaves correspond to small connected dominating sets. Both of these bounds are best possible for their respective graph classes. For both bounds simple polynomial time algorithms are given that find spanning trees satisfying the bounds. \ud \ud The second bound is used to find a new fastest FPT algorithm for the Max-Leaf Spanning Tree problem. This problem asks whether a graph G on n vertices has a spanning tree with at least k leaves. The time complexity of our algorithm is f(k)g(n), where g(n) is a polynomial, and f(k) ÃŽ O(8.12k).\ud \ud \u
    • …
    corecore