65,473 research outputs found

    On the Convex Feasibility Problem

    Full text link
    The convergence of the projection algorithm for solving the convex feasibility problem for a family of closed convex sets, is in connection with the regularity properties of the family. In the paper [18] are pointed out four cases of such a family depending of the two characteristics: the emptiness and boudedness of the intersection of the family. The case four (the interior of the intersection is empty and the intersection itself is bounded) is unsolved. In this paper we give a (partial) answer for the case four: in the case of two closed convex sets in R3 the regularity property holds.Comment: 14 pages, exposed on 5th International Conference "Actualities and Perspectives on Hardware and Software" - APHS2009, Timisoara, Romani

    Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

    Full text link
    The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem's subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call "zero-convexity". This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio

    Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility

    Full text link
    The problem of finding a vector with the fewest nonzero elements that satisfies an underdetermined system of linear equations is an NP-complete problem that is typically solved numerically via convex heuristics or nicely-behaved nonconvex relaxations. In this work we consider elementary methods based on projections for solving a sparse feasibility problem without employing convex heuristics. In a recent paper Bauschke, Luke, Phan and Wang (2014) showed that, locally, the fundamental method of alternating projections must converge linearly to a solution to the sparse feasibility problem with an affine constraint. In this paper we apply different analytical tools that allow us to show global linear convergence of alternating projections under familiar constraint qualifications. These analytical tools can also be applied to other algorithms. This is demonstrated with the prominent Douglas-Rachford algorithm where we establish local linear convergence of this method applied to the sparse affine feasibility problem.Comment: 29 pages, 2 figures, 37 references. Much expanded version from last submission. Title changed to reflect new development

    Application of projection algorithms to differential equations: boundary value problems

    Full text link
    The Douglas-Rachford method has been employed successfully to solve many kinds of non-convex feasibility problems. In particular, recent research has shown surprising stability for the method when it is applied to finding the intersections of hypersurfaces. Motivated by these discoveries, we reformulate a second order boundary valued problem (BVP) as a feasibility problem where the sets are hypersurfaces. We show that such a problem may always be reformulated as a feasibility problem on no more than three sets and is well-suited to parallelization. We explore the stability of the method by applying it to several examples of BVPs, including cases where the traditional Newton's method fails
    • …
    corecore