21,677 research outputs found

    A fast algorithm for matrix balancing

    Get PDF
    As long as a square nonnegative matrix A contains sufficient nonzero elements, then the matrix can be balanced, that is we can find a diagonal scaling of A that is doubly stochastic. A number of algorithms have been proposed to achieve the balancing, the most well known of these being Sinkhorn-Knopp. In this paper we derive new algorithms based on inner-outer iteration schemes. We show that Sinkhorn-Knopp belongs to this family, but other members can converge much more quickly. In particular, we show that while stationary iterative methods offer little or no improvement in many cases, a scheme using a preconditioned conjugate gradient method as the inner iteration can give quadratic convergence at low cost

    Some Preconditioning Techniques for Saddle Point Problems

    Get PDF
    Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution of such systems which are of particular importance in the context of large scale computation. In particular we describe some of the most useful preconditioning techniques for Krylov subspace solvers applied to saddle point problems, including block and constrained preconditioners.\ud \ud The work of Michele Benzi was supported in part by the National Science Foundation grant DMS-0511336
    corecore