28 research outputs found

    Dimension-free tail inequalities for sums of random matrices

    Full text link
    We derive exponential tail inequalities for sums of random matrices with no dependence on the explicit matrix dimensions. These are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the dimension is large or infinite. Some applications to principal component analysis and approximate matrix multiplication are given to illustrate the utility of the new bounds

    Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-Scale Image Retrieval

    Full text link
    We present a simple but powerful reinterpretation of kernelized locality-sensitive hashing (KLSH), a general and popular method developed in the vision community for performing approximate nearest-neighbor searches in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspective is based on viewing the steps of the KLSH algorithm in an appropriately projected space, and has several key theoretical and practical benefits. First, it eliminates the problematic conceptual difficulties that are present in the existing motivation of KLSH. Second, it yields the first formal retrieval performance bounds for KLSH. Third, our analysis reveals two techniques for boosting the empirical performance of KLSH. We evaluate these extensions on several large-scale benchmark image retrieval data sets, and show that our analysis leads to improved recall performance of at least 12%, and sometimes much higher, over the standard KLSH method.Comment: 15 page

    High-Dimensional Density Ratio Estimation with Extensions to Approximate Likelihood Computation

    Full text link
    The ratio between two probability density functions is an important component of various tasks, including selection bias correction, novelty detection and classification. Recently, several estimators of this ratio have been proposed. Most of these methods fail if the sample space is high-dimensional, and hence require a dimension reduction step, the result of which can be a significant loss of information. Here we propose a simple-to-implement, fully nonparametric density ratio estimator that expands the ratio in terms of the eigenfunctions of a kernel-based operator; these functions reflect the underlying geometry of the data (e.g., submanifold structure), often leading to better estimates without an explicit dimension reduction step. We show how our general framework can be extended to address another important problem, the estimation of a likelihood function in situations where that function cannot be well-approximated by an analytical form. One is often faced with this situation when performing statistical inference with data from the sciences, due the complexity of the data and of the processes that generated those data. We emphasize applications where using existing likelihood-free methods of inference would be challenging due to the high dimensionality of the sample space, but where our spectral series method yields a reasonable estimate of the likelihood function. We provide theoretical guarantees and illustrate the effectiveness of our proposed method with numerical experiments.Comment: With supplementary materia
    corecore