60 research outputs found

    Adversarial Neon Beam: Robust Physical-World Adversarial Attack to DNNs

    Full text link
    In the physical world, light affects the performance of deep neural networks. Nowadays, many products based on deep neural network have been put into daily life. There are few researches on the effect of light on the performance of deep neural network models. However, the adversarial perturbations generated by light may have extremely dangerous effects on these systems. In this work, we propose an attack method called adversarial neon beam (AdvNB), which can execute the physical attack by obtaining the physical parameters of adversarial neon beams with very few queries. Experiments show that our algorithm can achieve advanced attack effect in both digital test and physical test. In the digital environment, 99.3% attack success rate was achieved, and in the physical environment, 100% attack success rate was achieved. Compared with the most advanced physical attack methods, our method can achieve better physical perturbation concealment. In addition, by analyzing the experimental data, we reveal some new phenomena brought about by the adversarial neon beam attack

    Adversarial Defense via Neural Oscillation inspired Gradient Masking

    Full text link
    Spiking neural networks (SNNs) attract great attention due to their low power consumption, low latency, and biological plausibility. As they are widely deployed in neuromorphic devices for low-power brain-inspired computing, security issues become increasingly important. However, compared to deep neural networks (DNNs), SNNs currently lack specifically designed defense methods against adversarial attacks. Inspired by neural membrane potential oscillation, we propose a novel neural model that incorporates the bio-inspired oscillation mechanism to enhance the security of SNNs. Our experiments show that SNNs with neural oscillation neurons have better resistance to adversarial attacks than ordinary SNNs with LIF neurons on kinds of architectures and datasets. Furthermore, we propose a defense method that changes model's gradients by replacing the form of oscillation, which hides the original training gradients and confuses the attacker into using gradients of 'fake' neurons to generate invalid adversarial samples. Our experiments suggest that the proposed defense method can effectively resist both single-step and iterative attacks with comparable defense effectiveness and much less computational costs than adversarial training methods on DNNs. To the best of our knowledge, this is the first work that establishes adversarial defense through masking surrogate gradients on SNNs
    • …
    corecore