31,152 research outputs found

    Data-driven Variable Speed Limit Design for Highways via Distributionally Robust Optimization

    Full text link
    This paper introduces an optimization problem (P) and a solution strategy to design variable-speed-limit controls for a highway that is subject to traffic congestion and uncertain vehicle arrival and departure. By employing a finite data-set of samples of the uncertain variables, we aim to find a data-driven solution that has a guaranteed out-of-sample performance. In principle, such formulation leads to an intractable problem (P) as the distribution of the uncertainty variable is unknown. By adopting a distributionally robust optimization approach, this work presents a tractable reformulation of (P) and an efficient algorithm that provides a suboptimal solution that retains the out-of-sample performance guarantee. A simulation illustrates the effectiveness of this method.Comment: 10 pages, 2 figures, submitted to ECC 201

    Automatic Differentiation Variational Inference

    Full text link
    Probabilistic modeling is iterative. A scientist posits a simple model, fits it to her data, refines it according to her analysis, and repeats. However, fitting complex models to large data is a bottleneck in this process. Deriving algorithms for new models can be both mathematically and computationally challenging, which makes it difficult to efficiently cycle through the steps. To this end, we develop automatic differentiation variational inference (ADVI). Using our method, the scientist only provides a probabilistic model and a dataset, nothing else. ADVI automatically derives an efficient variational inference algorithm, freeing the scientist to refine and explore many models. ADVI supports a broad class of models-no conjugacy assumptions are required. We study ADVI across ten different models and apply it to a dataset with millions of observations. ADVI is integrated into Stan, a probabilistic programming system; it is available for immediate use
    • …
    corecore