2 research outputs found

    Critical connectedness of thin arithmetical discrete planes

    Full text link
    An arithmetical discrete plane is said to have critical connecting thickness if its thickness is equal to the infimum of the set of values that preserve its 22-connectedness. This infimum thickness can be computed thanks to the fully subtractive algorithm. This multidimensional continued fraction algorithm consists, in its linear form, in subtracting the smallest entry to the other ones. We provide a characterization of the discrete planes with critical thickness that have zero intercept and that are 22-connected. Our tools rely on the notion of dual substitution which is a geometric version of the usual notion of substitution acting on words. We associate with the fully subtractive algorithm a set of substitutions whose incidence matrix is provided by the matrices of the algorithm, and prove that their geometric counterparts generate arithmetic discrete planes.Comment: 18 pages, v2 includes several corrections and is a long version of the DGCI extended abstrac

    On the connecting thickness of arithmetical discrete planes

    No full text
    International audienceWhile connected rational arithmetical discrete lines and connected rational arithmetical discrete planes are entirely characterized, only partial results exist for the irrational arithmetical discrete planes. In the present paper, we focus on the connectedness of irrational arithmetical discrete planes, namely the arithmetical discrete planes with a normal vector of which the coordinates are not Q-linear dependent. Given v in R^3, we compute the lower bound of the thicknesses 2-connecting the arithmetical discrete planes with normal vector v. In particular, we show how the translation parameter operates in the connectedness of the arithmetical discrete planes
    corecore