300,333 research outputs found

    Excitation and emission spectra of rubidium in rare-gas thin-films

    Full text link
    To understand the optical properties of atoms in solid state matrices, the absorption, excitation and emission spectra of rubidium doped thin-films of argon, krypton and xenon were investigated in detail. A two-dimensional spectral analysis extends earlier reports on the excitation and emission properties of rubidium in rare-gas hosts. We found that the doped crystals of krypton and xenon exhibit a simple absorption-emission relation, whereas rubidium in argon showed more complicated spectral structures. Our sample preparation employed in the present work yielded different results for the Ar crystal, but our peak positions were consistent with the prediction based on the linear extrapolation of Xe and Kr data. We also observed a bleaching behavior in rubidium excitation spectra, which suggests a population transfer from one to another spectral feature due to hole-burning. The observed optical response implies that rubidium in rare-gas thin-films is detectable with extremely high sensitivity, possibly down to a single atom level, in low concentration samples.Comment: 7 pages, 5 figure

    ZnS Cu-doped quantum dots

    Get PDF
    The paper presents a survey of literature on the structure and optical properties of ZnS and copper ion-doped ZnS quantum dots. The effect of other metal dopants on the spectral properties of ZnS:Cu quantum dots was also considered. The influence of such parameters as dopant concentration, temperature of the synthesis and compounds which form or modify the additional layer on dots on spectral properties of the quantum dots was described. Examples of application of ZnS:Cu quantum dots are also given

    Studying the effect of concentration on spectral and optical properties of chitosan polymer

    Get PDF
    Due to its noteworthy physico-chemical behaviors, the chitosan (CS) biopolymer presents a compelling alternative to conventional biomaterials. By measuring the emission spectra at a spectrofluorophotometer in different concentrates (1x10-4, 1x10-5, and 1x10-6) M, the spectral characteristics of the CS polymer were obtained. The crystallinity of the CS polymer was determined by X-ray diffraction (XRD) analysis, which shows only one dominant peak indexed to the orthorhombic structure. With a drop in solution concentration, there was a shift toward the shorter wavelength and a decline in quantum yield. Using a UV-Vis spectrophotometer, the optical properties of the CS polymer, including its refractive index, absorption coefficient, energy band gap, extinction coefficient, and dielectric constant, have been studied. It was observed through the results that the optical parameters are linearly dependent with concentration. In contrast to the optical energy gap, which decreases with increasing concentration

    Aerosol Characteristics at a high-altitude station Nainital during the ISRO-GBP Land Campaign-II

    Full text link
    During the second land campaign (LC-II) organised by ISRO-GBP, extensive ground-based measurements of aerosol characteristics were carried out over Manora Peak (29.4oN; 79.5oE; 1951 metres above mean sea level), Nainital (a high altitude station located in the Shivalik ranges of Central Himalayas) during the dry, winter season (December) of 2004. These measurements included the spectral aerosol optical depths (AOD), columnar water vapour content (W), Total Columnar Ozone (TCO), total number concentration (NT) of near surface aerosols, mass concentration of black carbon (MB), aerosol mass loading (MT), and Global Solar Radiation. Based on these measured parameters, we present the results on the near-surface and columnar properties of atmospheric aerosols at Nainital.Comment: Published in the Proceedings of the ISRO-GBP Land-Campaign-II meeting, Physical Research Laboratory, Ahmadabad (Inida), March 200

    Detection of Edges in Spectral Data II. Nonlinear Enhancement

    Get PDF
    We discuss a general framework for recovering edges in piecewise smooth functions with finitely many jump discontinuities, where [f](x):=f(x+)f(x)0[f](x):=f(x+)-f(x-) \neq 0. Our approach is based on two main aspects--localization using appropriate concentration kernels and separation of scales by nonlinear enhancement. To detect such edges, one employs concentration kernels, Kϵ()K_\epsilon(\cdot), depending on the small scale ϵ\epsilon. It is shown that odd kernels, properly scaled, and admissible (in the sense of having small W1,W^{-1,\infty}-moments of order O(ϵ){\cal O}(\epsilon)) satisfy Kϵf(x)=[f](x)+O(ϵ)K_\epsilon*f(x) = [f](x) +{\cal O}(\epsilon), thus recovering both the location and amplitudes of all edges.As an example we consider general concentration kernels of the form KNσ(t)=σ(k/N)sinktK^\sigma_N(t)=\sum\sigma(k/N)\sin kt to detect edges from the first 1/ϵ=N1/\epsilon=N spectral modes of piecewise smooth f's. Here we improve in generality and simplicity over our previous study in [A. Gelb and E. Tadmor, Appl. Comput. Harmon. Anal., 7 (1999), pp. 101-135]. Both periodic and nonperiodic spectral projections are considered. We identify, in particular, a new family of exponential factors, σexp()\sigma^{exp}(\cdot), with superior localization properties. The other aspect of our edge detection involves a nonlinear enhancement procedure which is based on separation of scales between the edges, where Kϵf(x)[f](x)0K_\epsilon*f(x)\sim [f](x) \neq 0, and the smooth regions where Kϵf=O(ϵ)0K_\epsilon*f = {\cal O}(\epsilon) \sim 0. Numerical examples demonstrate that by coupling concentration kernels with nonlinear enhancement one arrives at effective edge detectors
    corecore