2,147 research outputs found

    Locally Testable Codes and Cayley Graphs

    Full text link
    We give two new characterizations of (\F_2-linear) locally testable error-correcting codes in terms of Cayley graphs over \F_2^h: \begin{enumerate} \item A locally testable code is equivalent to a Cayley graph over \F_2^h whose set of generators is significantly larger than hh and has no short linear dependencies, but yields a shortest-path metric that embeds into â„“1\ell_1 with constant distortion. This extends and gives a converse to a result of Khot and Naor (2006), which showed that codes with large dual distance imply Cayley graphs that have no low-distortion embeddings into â„“1\ell_1. \item A locally testable code is equivalent to a Cayley graph over \F_2^h that has significantly more than hh eigenvalues near 1, which have no short linear dependencies among them and which "explain" all of the large eigenvalues. This extends and gives a converse to a recent construction of Barak et al. (2012), which showed that locally testable codes imply Cayley graphs that are small-set expanders but have many large eigenvalues. \end{enumerate}Comment: 22 page

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Sequential Deliberation for Social Choice

    Full text link
    In large scale collective decision making, social choice is a normative study of how one ought to design a protocol for reaching consensus. However, in instances where the underlying decision space is too large or complex for ordinal voting, standard voting methods of social choice may be impractical. How then can we design a mechanism - preferably decentralized, simple, scalable, and not requiring any special knowledge of the decision space - to reach consensus? We propose sequential deliberation as a natural solution to this problem. In this iterative method, successive pairs of agents bargain over the decision space using the previous decision as a disagreement alternative. We describe the general method and analyze the quality of its outcome when the space of preferences define a median graph. We show that sequential deliberation finds a 1.208- approximation to the optimal social cost on such graphs, coming very close to this value with only a small constant number of agents sampled from the population. We also show lower bounds on simpler classes of mechanisms to justify our design choices. We further show that sequential deliberation is ex-post Pareto efficient and has truthful reporting as an equilibrium of the induced extensive form game. We finally show that for general metric spaces, the second moment of of the distribution of social cost of the outcomes produced by sequential deliberation is also bounded

    Embedding cube-connected cycles graphs into faulty hypercubes

    Get PDF
    We consider the problem of embedding a cube-connected cycles graph (CCC) into a hypercube with edge faults. Our main result is an algorithm that, given a list of faulty edges, computes an embedding of the CCC that spans all of the nodes and avoids all of the faulty edges. The algorithm has optimal running time and tolerates the maximum number of faults (in a worst-case setting). Because ascend-descend algorithms can be implemented efficiently on a CCC, this embedding enables the implementation of ascend-descend algorithms, such as bitonic sort, on hypercubes with edge faults. We also present a number of related results, including an algorithm for embedding a CCC into a hypercube with edge and node faults and an algorithm for embedding a spanning torus into a hypercube with edge faults

    Computational Complexity of Approximate Nash Equilibrium in Large Games

    Full text link
    We prove that finding an epsilon-Nash equilibrium in a succinctly representable game with many players is PPAD-hard for constant epsilon. Our proof uses succinct games, i.e. games whose payoff function is represented by a circuit. Our techniques build on a recent query complexity lower bound by Babichenko.Comment: New version includes an addendum about subsequent work on the open problems propose
    • …
    corecore