16,448 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Fill the void: improved scheduling for optical switching

    Get PDF
    With ever-increasing demand for bandwidth, optical packet/burst switching is proposed to utilize more of the available capacity of optical networks in the future. In these packet-based switching techniques, packet contention on a single wavelength is resolved effectively by means of Fiber Delay Lines. The involved scheduling algorithms are typically designed to minimize packet loss and/or packet delay. By filling so-called voids, void-filling algorithms are known to outperform their non-void-filling counterparts. This however comes at a large computational cost as the void-filling algorithms have to keep track of beginnings and endings of all voids. This is opposed to the non-void-filling algorithms which only have to keep track of a single system state variable. We therefore propose a new type of algorithm that selectively creates voids that are larger than strictly needed, only when these will likely be filled. Results obtained by Monte Carlo simulation show that selective void creation can jointly reduce packet loss by 50% and packet delay by 18%, without imposing a high computational cost

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication
    • …
    corecore