821 research outputs found

    The Approximate Optimality of Simple Schedules for Half-Duplex Multi-Relay Networks

    Full text link
    In ISIT'12 Brahma, \"{O}zg\"{u}r and Fragouli conjectured that in a half-duplex diamond relay network (a Gaussian noise network without a direct source-destination link and with NN non-interfering relays) an approximately optimal relay scheduling (achieving the cut-set upper bound to within a constant gap uniformly over all channel gains) exists with at most N+1N+1 active states (only N+1N+1 out of the 2N2^N possible relay listen-transmit configurations have a strictly positive probability). Such relay scheduling policies are said to be simple. In ITW'13 we conjectured that simple relay policies are optimal for any half-duplex Gaussian multi-relay network, that is, simple schedules are not a consequence of the diamond network's sparse topology. In this paper we formally prove the conjecture beyond Gaussian networks. In particular, for any memoryless half-duplex NN-relay network with independent noises and for which independent inputs are approximately optimal in the cut-set upper bound, an optimal schedule exists with at most N+1N+1 active states. The key step of our proof is to write the minimum of a submodular function by means of its Lov\'{a}sz extension and use the greedy algorithm for submodular polyhedra to highlight structural properties of the optimal solution. This, together with the saddle-point property of min-max problems and the existence of optimal basic feasible solutions in linear programs, proves the claim.Comment: Submitted to IEEE Information Theory Workshop (ITW) 201

    On Capacity and Optimal Scheduling for the Half-Duplex Multiple-Relay Channel

    Full text link
    We study the half-duplex multiple-relay channel (HD-MRC) where every node can either transmit or listen but cannot do both at the same time. We obtain a capacity upper bound based on a max-flow min-cut argument and achievable transmission rates based on the decode-forward (DF) coding strategy, for both the discrete memoryless HD-MRC and the phase-fading HD-MRC. We discover that both the upper bound and the achievable rates are functions of the transmit/listen state (a description of which nodes transmit and which receive). More precisely, they are functions of the time fraction of the different states, which we term a schedule. We formulate the optimal scheduling problem to find an optimal schedule that maximizes the DF rate. The optimal scheduling problem turns out to be a maximin optimization, for which we propose an algorithmic solution. We demonstrate our approach on a four-node multiple-relay channel, obtaining closed-form solutions in certain scenarios. Furthermore, we show that for the received signal-to-noise ratio degraded phase-fading HD-MRC, the optimal scheduling problem can be simplified to a max optimization.Comment: Author's final version (to appear in IEEE Transactions on Information Theory

    Upper Bounds to the Performance of Cooperative Traffic Relaying in Wireless Linear Networks

    Get PDF
    Wireless networks with linear topology, where nodes generate their own traffic and relay other nodes' traffic, have attracted increasing attention. Indeed, they well represent sensor networks monitoring paths or streets, as well as multihop networks for videosurveillance of roads or vehicular traffic. We study the performance limits of such network systems when (i) the nodes' transmissions can reach receivers farther than one-hop distance from the sender, (ii) the transmitters cooperate in the data delivery, and (iii) interference due to concurrent transmissions is taken into account. By adopting an information-theoretic approach, we derive analytical bounds to the achievable data rate in both the cases where the nodes have full-duplex and half-duplex radios. The expressions we provide are mathematically tractable and allow the analysis of multihop networks with a large number of nodes. Our analysis highlights that increasing the number of coop- erating transmitters beyond two leads to a very limited gain in the achievable data rate. Also, for half-duplex radios, it indicates the existence of dominant network states, which have a major influence on the bound. It follows that efficient, yet simple, communication strategies can be designed by considering at most two cooperating transmitters and by letting half-duplex nodes operate according to the aforementioned dominant state

    Efficiently Finding Simple Schedules in Gaussian Half-Duplex Relay Line Networks

    Full text link
    The problem of operating a Gaussian Half-Duplex (HD) relay network optimally is challenging due to the exponential number of listen/transmit network states that need to be considered. Recent results have shown that, for the class of Gaussian HD networks with N relays, there always exists a simple schedule, i.e., with at most N +1 active states, that is sufficient for approximate (i.e., up to a constant gap) capacity characterization. This paper investigates how to efficiently find such a simple schedule over line networks. Towards this end, a polynomial-time algorithm is designed and proved to output a simple schedule that achieves the approximate capacity. The key ingredient of the algorithm is to leverage similarities between network states in HD and edge coloring in a graph. It is also shown that the algorithm allows to derive a closed-form expression for the approximate capacity of the Gaussian line network that can be evaluated distributively and in linear time. Additionally, it is shown using this closed-form that the problem of Half-Duplex routing is NP-Hard.Comment: A short version of this paper was submitted to ISIT 201
    corecore