284 research outputs found

    Incremental Recompilation of Knowledge

    Full text link
    Approximating a general formula from above and below by Horn formulas (its Horn envelope and Horn core, respectively) was proposed by Selman and Kautz (1991, 1996) as a form of ``knowledge compilation,'' supporting rapid approximate reasoning; on the negative side, this scheme is static in that it supports no updates, and has certain complexity drawbacks pointed out by Kavvadias, Papadimitriou and Sideri (1993). On the other hand, the many frameworks and schemes proposed in the literature for theory update and revision are plagued by serious complexity-theoretic impediments, even in the Horn case, as was pointed out by Eiter and Gottlob (1992), and is further demonstrated in the present paper. More fundamentally, these schemes are not inductive, in that they may lose in a single update any positive properties of the represented sets of formulas (small size, Horn structure, etc.). In this paper we propose a new scheme, incremental recompilation, which combines Horn approximation and model-based updates; this scheme is inductive and very efficient, free of the problems facing its constituents. A set of formulas is represented by an upper and lower Horn approximation. To update, we replace the upper Horn formula by the Horn envelope of its minimum-change update, and similarly the lower one by the Horn core of its update; the key fact which enables this scheme is that Horn envelopes and cores are easy to compute when the underlying formula is the result of a minimum-change update of a Horn formula by a clause. We conjecture that efficient algorithms are possible for more complex updates.Comment: See http://www.jair.org/ for any accompanying file

    Reason Maintenance - State of the Art

    Get PDF
    This paper describes state of the art in reason maintenance with a focus on its future usage in the KiWi project. To give a bigger picture of the field, it also mentions closely related issues such as non-monotonic logic and paraconsistency. The paper is organized as follows: first, two motivating scenarios referring to semantic wikis are presented which are then used to introduce the different reason maintenance techniques

    Space Efficiency of Propositional Knowledge Representation Formalisms

    Full text link
    We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class

    Updating DL-Lite ontologies through first-order queries

    Get PDF
    In this paper we study instance-level update in DL-LiteA, the description logic underlying the OWL 2 QL standard. In particular we focus on formula-based approaches to ABox insertion and deletion. We show that DL-LiteA, which is well-known for enjoying first-order rewritability of query answering, enjoys a first-order rewritability property also for updates. That is, every update can be reformulated into a set of insertion and deletion instructions computable through a nonrecursive datalog program. Such a program is readily translatable into a first-order query over the ABox considered as a database, and hence into SQL. By exploiting this result, we implement an update component for DLLiteA-based systems and perform some experiments showing that the approach works in practice.Peer ReviewedPostprint (author's final draft

    On Properties of Update Sequences Based on Causal Rejection

    Full text link
    We consider an approach to update nonmonotonic knowledge bases represented as extended logic programs under answer set semantics. New information is incorporated into the current knowledge base subject to a causal rejection principle enforcing that, in case of conflicts, more recent rules are preferred and older rules are overridden. Such a rejection principle is also exploited in other approaches to update logic programs, e.g., in dynamic logic programming by Alferes et al. We give a thorough analysis of properties of our approach, to get a better understanding of the causal rejection principle. We review postulates for update and revision operators from the area of theory change and nonmonotonic reasoning, and some new properties are considered as well. We then consider refinements of our semantics which incorporate a notion of minimality of change. As well, we investigate the relationship to other approaches, showing that our approach is semantically equivalent to inheritance programs by Buccafurri et al. and that it coincides with certain classes of dynamic logic programs, for which we provide characterizations in terms of graph conditions. Therefore, most of our results about properties of causal rejection principle apply to these approaches as well. Finally, we deal with computational complexity of our approach, and outline how the update semantics and its refinements can be implemented on top of existing logic programming engines.Comment: 59 pages, 2 figures, 3 tables, to be published in "Theory and Practice of Logic Programming
    corecore