616,550 research outputs found

    Quantum Algorithms for Matrix Products over Semirings

    Full text link
    In this paper we construct quantum algorithms for matrix products over several algebraic structures called semirings, including the (max,min)-matrix product, the distance matrix product and the Boolean matrix product. In particular, we obtain the following results. We construct a quantum algorithm computing the product of two n x n matrices over the (max,min) semiring with time complexity O(n^{2.473}). In comparison, the best known classical algorithm for the same problem, by Duan and Pettie, has complexity O(n^{2.687}). As an application, we obtain a O(n^{2.473})-time quantum algorithm for computing the all-pairs bottleneck paths of a graph with n vertices, while classically the best upper bound for this task is O(n^{2.687}), again by Duan and Pettie. We construct a quantum algorithm computing the L most significant bits of each entry of the distance product of two n x n matrices in time O(2^{0.64L} n^{2.46}). In comparison, prior to the present work, the best known classical algorithm for the same problem, by Vassilevska and Williams and Yuster, had complexity O(2^{L}n^{2.69}). Our techniques lead to further improvements for classical algorithms as well, reducing the classical complexity to O(2^{0.96L}n^{2.69}), which gives a sublinear dependency on 2^L. The above two algorithms are the first quantum algorithms that perform better than the O~(n5/2)\tilde O(n^{5/2})-time straightforward quantum algorithm based on quantum search for matrix multiplication over these semirings. We also consider the Boolean semiring, and construct a quantum algorithm computing the product of two n x n Boolean matrices that outperforms the best known classical algorithms for sparse matrices. For instance, if the input matrices have O(n^{1.686...}) non-zero entries, then our algorithm has time complexity O(n^{2.277}), while the best classical algorithm has complexity O(n^{2.373}).Comment: 19 page

    Computational Difficulty of Global Variations in the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) approach is arguably the most successful method to numerically find ground states of quantum spin chains. It amounts to iteratively locally optimizing matrix-product states, aiming at better and better approximating the true ground state. To date, both a proof of convergence to the globally best approximation and an assessment of its complexity are lacking. Here we establish a result on the computational complexity of an approximation with matrix-product states: The surprising result is that when one globally optimizes over several sites of local Hamiltonians, avoiding local optima, one encounters in the worst case a computationally difficult NP-hard problem (hard even in approximation). The proof exploits a novel way of relating it to binary quadratic programming. We discuss intriguing ramifications on the difficulty of describing quantum many-body systems.Comment: 5 pages, 1 figure, RevTeX, final versio

    Faster Algorithms for Rectangular Matrix Multiplication

    Full text link
    Let {\alpha} be the maximal value such that the product of an n x n^{\alpha} matrix by an n^{\alpha} x n matrix can be computed with n^{2+o(1)} arithmetic operations. In this paper we show that \alpha>0.30298, which improves the previous record \alpha>0.29462 by Coppersmith (Journal of Complexity, 1997). More generally, we construct a new algorithm for multiplying an n x n^k matrix by an n^k x n matrix, for any value k\neq 1. The complexity of this algorithm is better than all known algorithms for rectangular matrix multiplication. In the case of square matrix multiplication (i.e., for k=1), we recover exactly the complexity of the algorithm by Coppersmith and Winograd (Journal of Symbolic Computation, 1990). These new upper bounds can be used to improve the time complexity of several known algorithms that rely on rectangular matrix multiplication. For example, we directly obtain a O(n^{2.5302})-time algorithm for the all-pairs shortest paths problem over directed graphs with small integer weights, improving over the O(n^{2.575})-time algorithm by Zwick (JACM 2002), and also improve the time complexity of sparse square matrix multiplication.Comment: 37 pages; v2: some additions in the acknowledgment
    • …
    corecore