3 research outputs found

    On the Communication Complexity of Secret Key Generation in the Multiterminal Source Model

    Full text link
    Communication complexity refers to the minimum rate of public communication required for generating a maximal-rate secret key (SK) in the multiterminal source model of Csiszar and Narayan. Tyagi recently characterized this communication complexity for a two-terminal system. We extend the ideas in Tyagi's work to derive a lower bound on communication complexity in the general multiterminal setting. In the important special case of the complete graph pairwise independent network (PIN) model, our bound allows us to determine the exact linear communication complexity, i.e., the communication complexity when the communication and SK are restricted to be linear functions of the randomness available at the terminals.Comment: A 5-page version of this manuscript will be submitted to the 2014 IEEE International Symposium on Information Theory (ISIT 2014

    Coded Cooperative Data Exchange for a Secret Key

    Full text link
    We consider a coded cooperative data exchange problem with the goal of generating a secret key. Specifically, we investigate the number of public transmissions required for a set of clients to agree on a secret key with probability one, subject to the constraint that it remains private from an eavesdropper. Although the problems are closely related, we prove that secret key generation with fewest number of linear transmissions is NP-hard, while it is known that the analogous problem in traditional cooperative data exchange can be solved in polynomial time. In doing this, we completely characterize the best possible performance of linear coding schemes, and also prove that linear codes can be strictly suboptimal. Finally, we extend the single-key results to characterize the minimum number of public transmissions required to generate a desired integer number of statistically independent secret keys.Comment: Full version of a paper that appeared at ISIT 2014. 19 pages, 2 figure

    On the Public Communication Needed to Achieve SK Capacity in the Multiterminal Source Model

    Full text link
    The focus of this paper is on the public communication required for generating a maximal-rate secret key (SK) within the multiterminal source model of Csisz{\'a}r and Narayan. Building on the prior work of Tyagi for the two-terminal scenario, we derive a lower bound on the communication complexity, RSKR_{\text{SK}}, defined to be the minimum rate of public communication needed to generate a maximal-rate SK. It is well known that the minimum rate of communication for omniscience, denoted by RCOR_{\text{CO}}, is an upper bound on RSKR_{\text{SK}}. For the class of pairwise independent network (PIN) models defined on uniform hypergraphs, we show that a certain "Type S\mathcal{S}" condition, which is verifiable in polynomial time, guarantees that our lower bound on RSKR_{\text{SK}} meets the RCOR_{\text{CO}} upper bound. Thus, PIN models satisfying our condition are RSKR_{\text{SK}}-maximal, meaning that the upper bound RSKRCOR_{\text{SK}} \le R_{\text{CO}} holds with equality. This allows us to explicitly evaluate RSKR_{\text{SK}} for such PIN models. We also give several examples of PIN models that satisfy our Type S\mathcal S condition. Finally, we prove that for an arbitrary multiterminal source model, a stricter version of our Type S\mathcal S condition implies that communication from \emph{all} terminals ("omnivocality") is needed for establishing a SK of maximum rate. For three-terminal source models, the converse is also true: omnivocality is needed for generating a maximal-rate SK only if the strict Type S\mathcal S condition is satisfied. Counterexamples exist that show that the converse is not true in general for source models with four or more terminals.Comment: Submitted to the IEEE Transactions on Information Theory. arXiv admin note: text overlap with arXiv:1504.0062
    corecore