16,476 research outputs found

    Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings

    Full text link
    While evolutionary algorithms are known to be very successful for a broad range of applications, the algorithm designer is often left with many algorithmic choices, for example, the size of the population, the mutation rates, and the crossover rates of the algorithm. These parameters are known to have a crucial influence on the optimization time, and thus need to be chosen carefully, a task that often requires substantial efforts. Moreover, the optimal parameters can change during the optimization process. It is therefore of great interest to design mechanisms that dynamically choose best-possible parameters. An example for such an update mechanism is the one-fifth success rule for step-size adaption in evolutionary strategies. While in continuous domains this principle is well understood also from a mathematical point of view, no comparable theory is available for problems in discrete domains. In this work we show that the one-fifth success rule can be effective also in discrete settings. We regard the (1+(λ,λ))(1+(\lambda,\lambda))~GA proposed in [Doerr/Doerr/Ebel: From black-box complexity to designing new genetic algorithms, TCS 2015]. We prove that if its population size is chosen according to the one-fifth success rule then the expected optimization time on \textsc{OneMax} is linear. This is better than what \emph{any} static population size λ\lambda can achieve and is asymptotically optimal also among all adaptive parameter choices.Comment: This is the full version of a paper that is to appear at GECCO 201

    Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box Optimization Heuristics: Profiling (1+λ)(1+\lambda) EA Variants on OneMax and LeadingOnes

    Full text link
    Theoretical and empirical research on evolutionary computation methods complement each other by providing two fundamentally different approaches towards a better understanding of black-box optimization heuristics. In discrete optimization, both streams developed rather independently of each other, but we observe today an increasing interest in reconciling these two sub-branches. In continuous optimization, the COCO (COmparing Continuous Optimisers) benchmarking suite has established itself as an important platform that theoreticians and practitioners use to exchange research ideas and questions. No widely accepted equivalent exists in the research domain of discrete black-box optimization. Marking an important step towards filling this gap, we adjust the COCO software to pseudo-Boolean optimization problems, and obtain from this a benchmarking environment that allows a fine-grained empirical analysis of discrete black-box heuristics. In this documentation we demonstrate how this test bed can be used to profile the performance of evolutionary algorithms. More concretely, we study the optimization behavior of several (1+λ)(1+\lambda) EA variants on the two benchmark problems OneMax and LeadingOnes. This comparison motivates a refined analysis for the optimization time of the (1+λ)(1+\lambda) EA on LeadingOnes

    Regularized Evolutionary Algorithm for Dynamic Neural Topology Search

    Full text link
    Designing neural networks for object recognition requires considerable architecture engineering. As a remedy, neuro-evolutionary network architecture search, which automatically searches for optimal network architectures using evolutionary algorithms, has recently become very popular. Although very effective, evolutionary algorithms rely heavily on having a large population of individuals (i.e., network architectures) and is therefore memory expensive. In this work, we propose a Regularized Evolutionary Algorithm with low memory footprint to evolve a dynamic image classifier. In details, we introduce novel custom operators that regularize the evolutionary process of a micro-population of 10 individuals. We conduct experiments on three different digits datasets (MNIST, USPS, SVHN) and show that our evolutionary method obtains competitive results with the current state-of-the-art

    Runtime Analysis of the (1+(λ,λ))(1+(\lambda,\lambda)) Genetic Algorithm on Random Satisfiable 3-CNF Formulas

    Full text link
    The (1+(λ,λ))(1+(\lambda,\lambda)) genetic algorithm, first proposed at GECCO 2013, showed a surprisingly good performance on so me optimization problems. The theoretical analysis so far was restricted to the OneMax test function, where this GA profited from the perfect fitness-distance correlation. In this work, we conduct a rigorous runtime analysis of this GA on random 3-SAT instances in the planted solution model having at least logarithmic average degree, which are known to have a weaker fitness distance correlation. We prove that this GA with fixed not too large population size again obtains runtimes better than Θ(nlogn)\Theta(n \log n), which is a lower bound for most evolutionary algorithms on pseudo-Boolean problems with unique optimum. However, the self-adjusting version of the GA risks reaching population sizes at which the intermediate selection of the GA, due to the weaker fitness-distance correlation, is not able to distinguish a profitable offspring from others. We show that this problem can be overcome by equipping the self-adjusting GA with an upper limit for the population size. Apart from sparse instances, this limit can be chosen in a way that the asymptotic performance does not worsen compared to the idealistic OneMax case. Overall, this work shows that the (1+(λ,λ))(1+(\lambda,\lambda)) GA can provably have a good performance on combinatorial search and optimization problems also in the presence of a weaker fitness-distance correlation.Comment: An extended abstract of this report will appear in the proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017

    Runtime Analysis for Self-adaptive Mutation Rates

    Full text link
    We propose and analyze a self-adaptive version of the (1,λ)(1,\lambda) evolutionary algorithm in which the current mutation rate is part of the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn)O(n\lambda/\log\lambda+n\log n) when λ\lambda is at least ClnnC \ln n for some constant C>0C > 0. For all values of λClnn\lambda \ge C \ln n, this performance is asymptotically best possible among all λ\lambda-parallel mutation-based unbiased black-box algorithms. Our result shows that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. At the same time, it proves that a relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gie{\ss}en, Witt, and Yang~(GECCO~2017) can be replaced by our simple endogenous scheme. On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift
    corecore