13,700 research outputs found

    On the Capacity Region of the Deterministic Y-Channel with Common and Private Messages

    Full text link
    In multi user Gaussian relay networks, it is desirable to transmit private information to each user as well as common information to all of them. However, the capacity region of such networks with both kinds of information is not easy to characterize. The prior art used simple linear deterministic models in order to approximate the capacities of these Gaussian networks. This paper discusses the capacity region of the deterministic Y-channel with private and common messages. In this channel, each user aims at delivering two private messages to the other two users in addition to a common message directed towards both of them. As there is no direct link between the users, all messages must pass through an intermediate relay. We present outer-bounds on the rate region using genie aided and cut-set bounds. Then, we develop a greedy scheme to define an achievable region and show that at a certain number of levels at the relay, our achievable region coincides with the upper bound. Finally, we argue that these bounds for this setup are not sufficient to characterize the capacity region.Comment: 4 figures, 7 page

    Capacity of All Nine Models of Channel Output Feedback for the Two-user Interference Channel

    Full text link
    In this paper, we study the impact of different channel output feedback architectures on the capacity of the two-user interference channel. For a two-user interference channel, a feedback link can exist between receivers and transmitters in 9 canonical architectures (see Fig. 2), ranging from only one feedback link to four feedback links. We derive the exact capacity region for the symmetric deterministic interference channel and the constant-gap capacity region for the symmetric Gaussian interference channel for all of the 9 architectures. We show that for a linear deterministic symmetric interference channel, in the weak interference regime, all models of feedback, except the one, which has only one of the receivers feeding back to its own transmitter, have the identical capacity region. When only one of the receivers feeds back to its own transmitter, the capacity region is a strict subset of the capacity region of the rest of the feedback models in the weak interference regime. However, the sum-capacity of all feedback models is identical in the weak interference regime. Moreover, in the strong interference regime all models of feedback with at least one of the receivers feeding back to its own transmitter have the identical sum-capacity. For the Gaussian interference channel, the results of the linear deterministic model follow, where capacity is replaced with approximate capacity.Comment: submitted to IEEE Transactions on Information Theory, results improved by deriving capacity region of all 9 canonical feedback models in two-user interference channe

    Deterministic Capacity of MIMO Relay Networks

    Full text link
    The deterministic capacity of a relay network is the capacity of a network when relays are restricted to transmitting \emph{reliable} information, that is, (asymptotically) deterministic function of the source message. In this paper it is shown that the deterministic capacity of a number of MIMO relay networks can be found in the low power regime where \SNR\to0. This is accomplished through deriving single letter upper bounds and finding the limit of these as \SNR\to0. The advantage of this technique is that it overcomes the difficulty of finding optimum distributions for mutual information.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore