1,263 research outputs found

    CLIPAG: Towards Generator-Free Text-to-Image Generation

    Full text link
    Perceptually Aligned Gradients (PAG) refer to an intriguing property observed in robust image classification models, wherein their input gradients align with human perception and pose semantic meanings. While this phenomenon has gained significant research attention, it was solely studied in the context of unimodal vision-only architectures. In this work, we extend the study of PAG to Vision-Language architectures, which form the foundations for diverse image-text tasks and applications. Through an adversarial robustification finetuning of CLIP, we demonstrate that robust Vision-Language models exhibit PAG in contrast to their vanilla counterparts. This work reveals the merits of CLIP with PAG (CLIPAG) in several vision-language generative tasks. Notably, we show that seamlessly integrating CLIPAG in a "plug-n-play" manner leads to substantial improvements in vision-language generative applications. Furthermore, leveraging its PAG property, CLIPAG enables text-to-image generation without any generative model, which typically requires huge generators

    Which Models have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness

    Full text link
    One of the remarkable properties of robust computer vision models is that their input-gradients are often aligned with human perception, referred to in the literature as perceptually-aligned gradients (PAGs). Despite only being trained for classification, PAGs cause robust models to have rudimentary generative capabilities, including image generation, denoising, and in-painting. However, the underlying mechanisms behind these phenomena remain unknown. In this work, we provide a first explanation of PAGs via \emph{off-manifold robustness}, which states that models must be more robust off- the data manifold than they are on-manifold. We first demonstrate theoretically that off-manifold robustness leads input gradients to lie approximately on the data manifold, explaining their perceptual alignment. We then show that Bayes optimal models satisfy off-manifold robustness, and confirm the same empirically for robust models trained via gradient norm regularization, noise augmentation, and randomized smoothing. Quantifying the perceptual alignment of model gradients via their similarity with the gradients of generative models, we show that off-manifold robustness correlates well with perceptual alignment. Finally, based on the levels of on- and off-manifold robustness, we identify three different regimes of robustness that affect both perceptual alignment and model accuracy: weak robustness, bayes-aligned robustness, and excessive robustness

    Inverting Adversarially Robust Networks for Image Synthesis

    Full text link
    Recent research in adversarially robust classifiers suggests their representations tend to be aligned with human perception, which makes them attractive for image synthesis and restoration applications. Despite favorable empirical results on a few downstream tasks, their advantages are limited to slow and sensitive optimization-based techniques. Moreover, their use on generative models remains unexplored. This work proposes the use of robust representations as a perceptual primitive for feature inversion models, and show its benefits with respect to standard non-robust image features. We empirically show that adopting robust representations as an image prior significantly improves the reconstruction accuracy of CNN-based feature inversion models. Furthermore, it allows reconstructing images at multiple scales out-of-the-box. Following these findings, we propose an encoding-decoding network based on robust representations and show its advantages for applications such as anomaly detection, style transfer and image denoising

    MAGIC: Mask-Guided Image Synthesis by Inverting a Quasi-Robust Classifier

    Full text link
    We offer a method for one-shot mask-guided image synthesis that allows controlling manipulations of a single image by inverting a quasi-robust classifier equipped with strong regularizers. Our proposed method, entitled MAGIC, leverages structured gradients from a pre-trained quasi-robust classifier to better preserve the input semantics while preserving its classification accuracy, thereby guaranteeing credibility in the synthesis. Unlike current methods that use complex primitives to supervise the process or use attention maps as a weak supervisory signal, MAGIC aggregates gradients over the input, driven by a guide binary mask that enforces a strong, spatial prior. MAGIC implements a series of manipulations with a single framework achieving shape and location control, intense non-rigid shape deformations, and copy/move operations in the presence of repeating objects and gives users firm control over the synthesis by requiring to simply specify binary guide masks. Our study and findings are supported by various qualitative comparisons with the state-of-the-art on the same images sampled from ImageNet and quantitative analysis using machine perception along with a user survey of 100+ participants that endorse our synthesis quality. Project page at https://mozhdehrouhsedaghat.github.io/magic.html. Code is available at https://github.com/mozhdehrouhsedaghat/magicComment: Accepted to the Thirty-Seventh Conference on Artificial Intelligence (AAAI) 2023 - 12 pages, 9 figure
    • …
    corecore