3,313 research outputs found

    Poor Man's Content Centric Networking (with TCP)

    Get PDF
    A number of different architectures have been proposed in support of data-oriented or information-centric networking. Besides a similar visions, they share the need for designing a new networking architecture. We present an incrementally deployable approach to content-centric networking based upon TCP. Content-aware senders cooperate with probabilistically operating routers for scalable content delivery (to unmodified clients), effectively supporting opportunistic caching for time-shifted access as well as de-facto synchronous multicast delivery. Our approach is application protocol-independent and provides support beyond HTTP caching or managed CDNs. We present our protocol design along with a Linux-based implementation and some initial feasibility checks

    Content Based Traffic Engineering in Software Defined Information Centric Networks

    Full text link
    This paper describes a content centric network architecture which uses software defined networking principles to implement efficient metadata driven services by extracting content metadata at the network layer. The ability to access content metadata transparently enables a number of new services in the network. Specific examples discussed here include: a metadata driven traffic engineering scheme which uses prior knowledge of content length to optimize content delivery, a metadata driven content firewall which is more resilient than traditional firewalls and differentiated treatment of content based on the type of content being accessed. A detailed outline of an implementation of the proposed architecture is presented along with some basic evaluation

    On the Benefit of Information Centric Networks for Traffic Engineering

    Full text link
    Current Internet performs traffic engineering (TE) by estimating traffic matrices on a regular schedule, and allocating flows based upon weights computed from these matrices. This means the allocation is based upon a guess of the traffic in the network based on its history. Information-Centric Networks on the other hand provide a finer-grained description of the traffic: a content between a client and a server is uniquely identified by its name, and the network can therefore learn the size of different content items, and perform traffic engineering and resource allocation accordingly. We claim that Information-Centric Networks can therefore provide a better handle to perform traffic engineering, resulting in significant performance gain. We present a mechanism to perform such resource allocation. We see that our traffic engineering method only requires knowledge of the flow size (which, in ICN, can be learned from previous data transfers) and outperforms a min-MLU allocation in terms of response time. We also see that our method identifies the traffic allocation patterns similar to that of min-MLU without having access to the traffic matrix ahead of time. We show a very significant gain in response time where min MLU is almost 50% slower than our ICN-based TE method

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin
    corecore