3 research outputs found

    On the autocorrelation properties of truncated maximum-length sequences and their effect on the power spectrum

    Get PDF
    none4Truncated maximum-length binary sequences are studied in this paper. The impact of truncation on their autocorrelation properties and power spectral density is investigated. Several new analytical results are given and validated through simulation. The first- and second-order statistics of the periodic autocorrelation function and the spectral peak amplitudes over the ensemble of all possible starting seeds are analyzed. Explicit bounds are found for the mean square of the periodic autocorrelation function. An analytical technique for evaluating the maximum spectral peak values is derived. As a case study, high data rate space links using LFSR randomizers are considered. Truncation may induce high peaks in the spectrum, requiring suitable margins to comply with power flux density constraints. The new results allow to analytically estimate the margin, providing useful information for the link design.BALDI M; F. CHIARALUCE; BOUJNAH N; GARELLO RBaldi, Marco; Chiaraluce, Franco; Boujnah, N; Garello, R

    Slender PUF Protocol: A lightweight, robust, and secure authentication by substring matching

    Get PDF
    We introduce Slender PUF protocol, an efficient and secure method to authenticate the responses generated from a Strong Physical Unclonable Function (PUF). The new method is lightweight, and suitable for energy constrained platforms such as ultra-low power embedded systems for use in identification and authentication applications. The proposed protocol does not follow the classic paradigm of exposing the full PUF responses (or a transformation of the full string of responses) on the communication channel. Instead, random subsets of the responses are revealed and sent for authentication. The response patterns are used for authenticating the prover device with a very high probability.We perform a thorough analysis of the method’s resiliency to various attacks which guides adjustment of our protocol parameters for an efficient and secure implementation. We demonstrate that Slender PUF protocol, if carefully designed, will be resilient against all known machine learning attacks. In addition, it has the great advantage of an inbuilt PUF error tolerance. Thus, Slender PUF protocol is lightweight and does not require costly additional error correction, fuzzy extractors, and hash modules suggested in most previously known PUF-based robust authentication techniques. The low overhead and practicality of the protocol are confirmed by a set of hardware implementation and evaluations

    On the Autocorrelation Properties of Truncated Maximum-Length Sequences and Their Effect on the Power Spectrum

    No full text
    Truncated maximum-length binary sequences are studied in this paper. The impact of truncation on their autocorrelation properties and power spectral density is investigated. Several new analytical results are given and validated through simulation. The first- and second-order statistics of the periodic autocorrelation function and the spectral peak amplitudes over the ensemble of all possible starting seeds are analyzed. Explicit bounds are found for the mean square of the periodic autocorrelation function. An analytical technique for evaluating the maximum spectral peak values is derived. As a case study, high data rate space links using LFSR randomizers are considered. Truncation may induce high peaks in the spectrum, requiring suitable margins to comply with power flux density constraints. The new results allow to analytically estimate the margin, providing useful information for the link desig
    corecore