556 research outputs found

    An algebraic multigrid method for Q2βˆ’Q1Q_2-Q_1 mixed discretizations of the Navier-Stokes equations

    Full text link
    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Specifically, we investigate a Q2βˆ’Q1Q_2-Q_1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches leveraging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity dof relationships of the Q2βˆ’Q1Q_2-Q_1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the finest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.Comment: Submitted to a journa

    A robust multigrid method for the time-dependent Stokes problem

    Get PDF
    In the present paper we propose an all-at-once multigrid method for generalized Stokes flow problems. Such problems occur as subproblems in implicit time-stepping approaches for time-dependent Stokes problems. The discretized optimality system is a large scale linear system whose condition number depends on the grid size of the spacial discretization and of the length of the time step. Recently, for this problem an all-at-once multigrid method has been proposed, where in each smoothing step the Poisson problem has to be solved (approximatively) for the pressure field. In the present paper, we propose an all-at-once multigrid method where the solution of such subproblems is not needed. We prove that the proposed method shows robust convergence behavior in the grid size of the spacial discretization and of the length of the time-step
    • …
    corecore