482 research outputs found

    A Spectral Theory for Tensors

    Full text link
    In this paper we propose a general spectral theory for tensors. Our proposed factorization decomposes a tensor into a product of orthogonal and scaling tensors. At the same time, our factorization yields an expansion of a tensor as a summation of outer products of lower order tensors . Our proposed factorization shows the relationship between the eigen-objects and the generalised characteristic polynomials. Our framework is based on a consistent multilinear algebra which explains how to generalise the notion of matrix hermicity, matrix transpose, and most importantly the notion of orthogonality. Our proposed factorization for a tensor in terms of lower order tensors can be recursively applied so as to naturally induces a spectral hierarchy for tensors.Comment: The paper is an updated version of an earlier versio

    Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography

    Get PDF
    The inverse problem of electrical impedance tomography is severely ill-posed, meaning that, only limited information about the conductivity can in practice be recovered from boundary measurements of electric current and voltage. Recently it was shown that a simple monotonicity property of the related Neumann-to-Dirichlet map can be used to characterize shapes of inhomogeneities in a known background conductivity. In this paper we formulate a monotonicity-based shape reconstruction scheme that applies to approximative measurement models, and regularizes against noise and modelling error. We demonstrate that for admissible choices of regularization parameters the inhomogeneities are detected, and under reasonable assumptions, asymptotically exactly characterized. Moreover, we rigorously associate this result with the complete electrode model, and describe how a computationally cheap monotonicity-based reconstruction algorithm can be implemented. Numerical reconstructions from both simulated and real-life measurement data are presented

    An efficient high-order algorithm for acoustic scattering from penetrable thin structures in three dimensions

    Get PDF
    This paper presents a high-order accelerated algorithm for the solution of the integral-equation formulation of volumetric scattering problems. The scheme is particularly well suited to the analysis of “thin” structures as they arise in certain applications (e.g., material coatings); in addition, it is also designed to be used in conjunction with existing low-order FFT-based codes to upgrade their order of accuracy through a suitable treatment of material interfaces. The high-order convergence of the new procedure is attained through a combination of changes of parametric variables (to resolve the singularities of the Green function) and “partitions of unity” (to allow for a simple implementation of spectrally accurate quadratures away from singular points). Accelerated evaluations of the interaction between degrees of freedom, on the other hand, are accomplished by incorporating (two-face) equivalent source approximations on Cartesian grids. A detailed account of the main algorithmic components of the scheme are presented, together with a brief review of the corresponding error and performance analyses which are exemplified with a variety of numerical results
    • …
    corecore