20 research outputs found

    On the Achievability of Interference Alignment in the K-User Constant MIMO Interference Channel

    Full text link
    Interference alignment in the K-user MIMO interference channel with constant channel coefficients is considered. A novel constructive method for finding the interference alignment solution is proposed for the case where the number of transmit antennas equals the number of receive antennas (NT = NR = N), the number of transmitter-receiver pairs equals K = N + 1, and all interference alignment multiplexing gains are one. The core of the method consists of solving an eigenvalue problem that incorporates the channel matrices of all interfering links. This procedure provides insight into the feasibility of signal vector spaces alignment schemes in finite dimensional MIMO interference channels.Comment: submitted to IEEE Workshop on Statistical Signal Processing (SSP09

    Maximizing the Sum Rate in Cellular Networks Using Multi-Convex Optimization

    Full text link
    In this paper, we propose a novel algorithm to maximize the sum rate in interference-limited scenarios where each user decodes its own message with the presence of unknown interferences and noise considering the signal-to-interference-plus-noise-ratio. It is known that the problem of adapting the transmit and receive filters of the users to maximize the sum rate with a sum transmit power constraint is non-convex. Our novel approach is to formulate the sum rate maximization problem as an equivalent multi-convex optimization problem by adding two sets of auxiliary variables. An iterative algorithm which alternatingly adjusts the system variables and the auxiliary variables is proposed to solve the multi-convex optimization problem. The proposed algorithm is applied to a downlink cellular scenario consisting of several cells each of which contains a base station serving several mobile stations. We examine the two cases, with or without several half-duplex amplify-and-forward relays assisting the transmission. A sum power constraint at the base stations and a sum power constraint at the relays are assumed. Finally, we show that the proposed multi-convex formulation of the sum rate maximization problem is applicable to many other wireless systems in which the estimated data symbols are multi-affine functions of the system variables.Comment: 24 pages, 5 figure

    MIMO Interference Alignment Over Correlated Channels with Imperfect CSI

    Full text link
    Interference alignment (IA), given uncorrelated channel components and perfect channel state information, obtains the maximum degrees of freedom in an interference channel. Little is known, however, about how the sum rate of IA behaves at finite transmit power, with imperfect channel state information, or antenna correlation. This paper provides an approximate closed-form signal-to-interference-plus-noise-ratio (SINR) expression for IA over multiple-input-multiple-output (MIMO) channels with imperfect channel state information and transmit antenna correlation. Assuming linear processing at the transmitters and zero-forcing receivers, random matrix theory tools are utilized to derive an approximation for the post-processing SINR distribution of each stream for each user. Perfect channel knowledge and i.i.d. channel coefficients constitute special cases. This SINR distribution not only allows easy calculation of useful performance metrics like sum rate and symbol error rate, but also permits a realistic comparison of IA with other transmission techniques. More specifically, IA is compared with spatial multiplexing and beamforming and it is shown that IA may not be optimal for some performance criteria.Comment: 21 pages, 7 figures, submitted to IEEE Transactions on Signal Processin

    Dynamic Interference Mitigation for Generalized Partially Connected Quasi-static MIMO Interference Channel

    Full text link
    Recent works on MIMO interference channels have shown that interference alignment can significantly increase the achievable degrees of freedom (DoF) of the network. However, most of these works have assumed a fully connected interference graph. In this paper, we investigate how the partial connectivity can be exploited to enhance system performance in MIMO interference networks. We propose a novel interference mitigation scheme which introduces constraints for the signal subspaces of the precoders and decorrelators to mitigate "many" interference nulling constraints at a cost of "little" freedoms in precoder and decorrelator design so as to extend the feasibility region of the interference alignment scheme. Our analysis shows that the proposed algorithm can significantly increase system DoF in symmetric partially connected MIMO interference networks. We also compare the performance of the proposed scheme with various baselines and show via simulations that the proposed algorithms could achieve significant gain in the system performance of randomly connected interference networks.Comment: 30 pages, 10 figures, accepted by IEEE Transaction on Signal Processin

    User Arrival in MIMO Interference Alignment Networks

    Full text link
    In this paper we analyze a constant multiple-input multiple-output interference channel where a set of active users are cooperating through interference alignment while a set of secondary users desire access to the channel. We derive the minimum number of secondary transmit antennas required so that a secondary user can use the channel without affecting the sum rate of the active users, under a zero-forcing equalization assumption. When the secondary users have enough antennas, we derive several secondary user precoders that approximately maximize the secondary users' sum rate without changing the sum rate of the active users. When the secondary users do not have enough antennas, we perform numerical optimization to find secondary user precoders that cause minimum degradation to the sum rate of the active users. Through simulations, we confirm that i) with enough antennas at the secondary users, gains equivalent to the case of all the users cooperating through interference alignment is obtainable, and ii) when the secondary users do not have enough antennas, large rate losses at the active users can be avoided.Comment: 17 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication
    corecore