7,114 research outputs found

    A Pseudopolynomial Algorithm for Alexandrov's Theorem

    Full text link
    Alexandrov's Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution leads to the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. Along the way, we develop pseudopolynomial algorithms for computing shortest paths and weighted Delaunay triangulations on a polyhedral surface, even when the surface edges are not shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes; an abbreviated v2 was at WADS 200

    Playing Billiard in Version Space

    Full text link
    A ray-tracing method inspired by ergodic billiards is used to estimate the theoretically best decision rule for a set of linear separable examples. While the Bayes-optimum requires a majority decision over all Perceptrons separating the example set, the problem considered here corresponds to finding the single Perceptron with best average generalization probability. For randomly distributed examples the billiard estimate agrees with known analytic results. In real-life classification problems the generalization error is consistently reduced compared to the maximal stability Perceptron.Comment: uuencoded, gzipped PostScript file, 127576 bytes To recover 1) save file as bayes.uue. Then 2) uudecode bayes.uue and 3) gunzip bayes.ps.g

    Gauss images of hyperbolic cusps with convex polyhedral boundary

    Full text link
    We prove that a 3--dimensional hyperbolic cusp with convex polyhedral boundary is uniquely determined by its Gauss image. Furthermore, any spherical metric on the torus with cone singularities of negative curvature and all closed contractible geodesics of length greater than 2π2\pi is the metric of the Gauss image of some convex polyhedral cusp. This result is an analog of the Rivin-Hodgson theorem characterizing compact convex hyperbolic polyhedra in terms of their Gauss images. The proof uses a variational method. Namely, a cusp with a given Gauss image is identified with a critical point of a functional on the space of cusps with cone-type singularities along a family of half-lines. The functional is shown to be concave and to attain maximum at an interior point of its domain. As a byproduct, we prove rigidity statements with respect to the Gauss image for cusps with or without cone-type singularities. In a special case, our theorem is equivalent to existence of a circle pattern on the torus, with prescribed combinatorics and intersection angles. This is the genus one case of a theorem by Thurston. In fact, our theorem extends Thurston's theorem in the same way as Rivin-Hodgson's theorem extends Andreev's theorem on compact convex polyhedra with non-obtuse dihedral angles. The functional used in the proof is the sum of a volume term and curvature term. We show that, in the situation of Thurston's theorem, it is the potential for the combinatorial Ricci flow considered by Chow and Luo. Our theorem represents the last special case of a general statement about isometric immersions of compact surfaces.Comment: 55 pages, 17 figure

    Weighted Sobolev spaces and regularity for polyhedral domains

    Get PDF
    We prove a regularity result for the Poisson problem Δu=f-\Delta u = f, u |\_{\pa \PP} = g on a polyhedral domain \PP \subset \RR^3 using the \BK\ spaces \Kond{m}{a}(\PP). These are weighted Sobolev spaces in which the weight is given by the distance to the set of edges \cite{Babu70, Kondratiev67}. In particular, we show that there is no loss of \Kond{m}{a}--regularity for solutions of strongly elliptic systems with smooth coefficients. We also establish a "trace theorem" for the restriction to the boundary of the functions in \Kond{m}{a}(\PP)
    corecore