9,192 research outputs found

    Learning Feedback Terms for Reactive Planning and Control

    Full text link
    With the advancement of robotics, machine learning, and machine perception, increasingly more robots will enter human environments to assist with daily tasks. However, dynamically-changing human environments requires reactive motion plans. Reactivity can be accomplished through replanning, e.g. model-predictive control, or through a reactive feedback policy that modifies on-going behavior in response to sensory events. In this paper, we investigate how to use machine learning to add reactivity to a previously learned nominal skilled behavior. We approach this by learning a reactive modification term for movement plans represented by nonlinear differential equations. In particular, we use dynamic movement primitives (DMPs) to represent a skill and a neural network to learn a reactive policy from human demonstrations. We use the well explored domain of obstacle avoidance for robot manipulation as a test bed. Our approach demonstrates how a neural network can be combined with physical insights to ensure robust behavior across different obstacle settings and movement durations. Evaluations on an anthropomorphic robotic system demonstrate the effectiveness of our work.Comment: 8 pages, accepted to be published at ICRA 2017 conferenc

    Cosmic Dawn and Epoch of Reionization Foreground Removal with the SKA

    Get PDF
    The exceptional sensitivity of the SKA will allow observations of the Cosmic Dawn and Epoch of Reionization (CD/EoR) in unprecedented detail, both spectrally and spatially. This wealth of information is buried under Galactic and extragalactic foregrounds, which must be removed accurately and precisely in order to reveal the cosmological signal. This problem has been addressed already for the previous generation of radio telescopes, but the application to SKA is different in many aspects. In this chapter we summarise the contributions to the field of foreground removal in the context of high redshift and high sensitivity 21-cm measurements. We use a state-of-the-art simulation of the SKA Phase 1 observations complete with cosmological signal, foregrounds and frequency-dependent instrumental effects to test both parametric and non-parametric foreground removal methods. We compare the recovered cosmological signal using several different statistics and explore one of the most exciting possibilities with the SKA --- imaging of the ionized bubbles. We find that with current methods it is possible to remove the foregrounds with great accuracy and to get impressive power spectra and images of the cosmological signal. The frequency-dependent PSF of the instrument complicates this recovery, so we resort to splitting the observation bandwidth into smaller segments, each of a common resolution. If the foregrounds are allowed a random variation from the smooth power law along the line of sight, methods exploiting the smoothness of foregrounds or a parametrization of their behaviour are challenged much more than non-parametric ones. However, we show that correction techniques can be implemented to restore the performances of parametric approaches, as long as the first-order approximation of a power law stands.Comment: Accepted for publication in the SKA Science Book 'Advancing Astrophysics with the Square Kilometre Array', to appear in 201

    Implementation of UAV Coordination Based on a Hierarchical Multi-UAV Simulation Platform

    Full text link
    In this paper, a hierarchical multi-UAV simulation platform,called XTDrone, is designed for UAV swarms, which is completely open-source 4 . There are six layers in XTDrone: communication, simulator,low-level control, high-level control, coordination, and human interac-tion layers. XTDrone has three advantages. Firstly, the simulation speedcan be adjusted to match the computer performance, based on the lock-step mode. Thus, the simulations can be conducted on a work stationor on a personal laptop, for different purposes. Secondly, a simplifiedsimulator is also developed which enables quick algorithm designing sothat the approximated behavior of UAV swarms can be observed inadvance. Thirdly, XTDrone is based on ROS, Gazebo, and PX4, andhence the codes in simulations can be easily transplanted to embeddedsystems. Note that XTDrone can support various types of multi-UAVmissions, and we provide two important demos in this paper: one is aground-station-based multi-UAV cooperative search, and the other is adistributed UAV formation flight, including consensus-based formationcontrol, task assignment, and obstacle avoidance.Comment: 12 pages, 10 figures. And for the, see https://gitee.com/robin_shaun/XTDron

    The FHD/ε\boldsymbol{\varepsilon}ppsilon Epoch of Reionization Power Spectrum Pipeline

    Full text link
    Epoch of Reionization data analysis requires unprecedented levels of accuracy in radio interferometer pipelines. We have developed an imaging power spectrum analysis to meet these requirements and generate robust 21 cm EoR measurements. In this work, we build a signal path framework to mathematically describe each step in the analysis, from data reduction in the FHD package to power spectrum generation in the ε\varepsilonppsilon package. In particular, we focus on the distinguishing characteristics of FHD/ε\varepsilonppsilon: highly accurate spectral calibration, extensive data verification products, and end-to-end error propagation. We present our key data analysis products in detail to facilitate understanding of the prominent systematics in image-based power spectrum analyses. As a verification to our analysis, we also highlight a full-pipeline analysis simulation to demonstrate signal preservation and lack of signal loss. This careful treatment ensures that the FHD/ε\varepsilonppsilon power spectrum pipeline can reduce radio interferometric data to produce credible 21 cm EoR measurements.Comment: 21 pages, 10 figures, accepted by PAS
    • …
    corecore