3,493 research outputs found

    Stackelberg strategies in linear-quadratic stochastic differential games

    Get PDF
    This paper obtains the Stackelberg solution to a class of two-player stochastic differential games described by linear state dynamics and quadratic objective functionals. The information structure of the problem is such that the players make independent noisy measurements of the initial state and are permitted to utilize only this information in constructing their controls. Furthermore, by the very nature of the Stackelberg solution concept, one of the players is assumed to know, in advance, the strategy of the other player (the leader). For this class of problems, we first establish existence and uniqueness of the Stackelberg solution and then relate the derivation of the leader's Stackelberg solution to the optimal solution of a nonstandard stochastic control problem. This stochastic control problem is solved in a more general context, and its solution is utilized in constructing the Stackelberg strategy of the leader. For the special case Gaussian statistics, it is shown that this optimal strategy is affine in observation of the leader. The paper also discusses numerical aspects of the Stackelberg solution under general statistics and develops algorithms which converge to the unique Stackelberg solution

    Stochastic Stackelberg games

    Full text link
    In this paper, we consider a discrete-time stochastic Stackelberg game where there is a defender (also called leader) who has to defend a target and an attacker (also called follower). Both attacker and defender have conditionally independent private types, conditioned on action and previous state, that evolve as controlled Markov processes. The objective is to compute the stochastic Stackelberg equilibrium of the game where defender commits to a strategy. The attacker's strategy is the best response to the defender strategy and defender's strategy is optimum given the attacker plays the best response. In general, computing such equilibrium involves solving a fixed-point equation for the whole game. In this paper, we present an algorithm that computes such strategies by solving smaller fixed-point equations for each time tt. This reduces the computational complexity of the problem from double exponential in time to linear in time. Based on this algorithm, we compute stochastic Stackelberg equilibrium of a security example.Comment: 31 pages, 6 figure

    A dynamic pricipal-agent problem as a feedback Stackelberg differentioal game

    Get PDF
    We consider situations in which a principal tries to induce an agent to spend e®ort on accumulating a state variable that a®ects the well-being of both parties. The only incentive mechanism that the principal can use is a state-dependent transfer of her own utility to the agent. Formally, the model is a Stackelberg di®erential game in which the players use feedback strategies. Whereas in general Stackelberg di®erential games with feedback strategy spaces the leader's optimization problem has non-standard features that make it extremely hard to solve, in the present case this problem can be rewritten as a standard optimal control problem. Two examples are used to illustrate our approach.
    corecore