4 research outputs found

    Filaments of crime: Informing policing via thresholded ridge estimation

    Full text link
    Objectives: We introduce a new method for reducing crime in hot spots and across cities through ridge estimation. In doing so, our goal is to explore the application of density ridges to hot spots and patrol optimization, and to contribute to the policing literature in police patrolling and crime reduction strategies. Methods: We make use of the subspace-constrained mean shift algorithm, a recently introduced approach for ridge estimation further developed in cosmology, which we modify and extend for geospatial datasets and hot spot analysis. Our experiments extract density ridges of Part I crime incidents from the City of Chicago during the year 2018 and early 2019 to demonstrate the application to current data. Results: Our results demonstrate nonlinear mode-following ridges in agreement with broader kernel density estimates. Using early 2019 incidents with predictive ridges extracted from 2018 data, we create multi-run confidence intervals and show that our patrol templates cover around 94% of incidents for 0.1-mile envelopes around ridges, quickly rising to near-complete coverage. We also develop and provide researchers, as well as practitioners, with a user-friendly and open-source software for fast geospatial density ridge estimation. Conclusions: We show that ridges following crime report densities can be used to enhance patrolling capabilities. Our empirical tests show the stability of ridges based on past data, offering an accessible way of identifying routes within hot spots instead of patrolling epicenters. We suggest further research into the application and efficacy of density ridges for patrolling.Comment: 17 pages, 3 figure

    Efficient Optimization Algorithms for Nonlinear Data Analysis

    Get PDF
    Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.Siirretty Doriast
    corecore