629 research outputs found

    The Classification Theorem for Compact Surfaces and a Detour on Fractals

    Get PDF
    In the words of Milnor himself, the classification theorem for compact surfaces is a formidable result. According to Massey, this result was obtained in the early 1920’s and was the culmination of the work of many. Indeed, a rigorous proof requires, among other things, a precise definition of a surface and of orientability, a precise notion of triangulation, and a precise way of determining whether two surfaces are homeomorphic or not. This requires some notions of algebraic topology such as, fundamental groups, homology groups, and the Euler-Poincaré characteristic. Most steps of the proof are rather involved and it is easy to loose track. The purpose of these notes is to present a fairly complete proof of the classification Theorem for compact surfaces. Other presentations are often quite informal (see the references in Chapter V) and we have tried to be more rigorous. Our main source of inspiration is the beautiful book on Riemann Surfaces by Ahlfors and Sario. However, Ahlfors and Sario’s presentation is very formal and quite compact. As a result, uninitiated readers will probably have a hard time reading this book. Our goal is to help the reader reach the top of the mountain and help him not to get lost or discouraged too early. This is not an easy task! We provide quite a bit of topological background material and the basic facts of algebraic topology needed for understanding how the proof goes, with more than an impressionistic feeling. We hope that these notes will be helpful to readers interested in geometry, and who still believe in the rewards of serious hiking

    Report of Meeting: The Fifteenth Katowice–Debrecen Winter Seminar Będlewo (Poland), January 28–31, 2015

    Get PDF
    Sprawozdanie z konferencji: The Fifteenth Katowice–Debrecen Winter Seminar Będlewo (Poland), January 28–31, 2015

    Circular Pythagorean fuzzy sets and applications to multi-criteria decision making

    Full text link
    In this paper, we introduce the concept of circular Pythagorean fuzzy set (value) (C-PFS(V)) as a new generalization of both circular intuitionistic fuzzy sets (C-IFSs) proposed by Atannassov and Pythagorean fuzzy sets (PFSs) proposed by Yager. A circular Pythagorean fuzzy set is represented by a circle that represents the membership degree and the non-membership degree and whose center consists of non-negative real numbers μ\mu and ν\nu with the condition μ2+ν2≤1\mu^2+\nu^2\leq 1. A C-PFS models the fuzziness of the uncertain information more properly thanks to its structure that allows modelling the information with points of a circle of a certain center and a radius. Therefore, a C-PFS lets decision makers to evaluate objects in a larger and more flexible region and thus more sensitive decisions can be made. After defining the concept of C-PFS we define some fundamental set operations between C-PFSs and propose some algebraic operations between C-PFVs via general tt-norms and tt-conorms. By utilizing these algebraic operations, we introduce some weighted aggregation operators to transform input values represented by C-PFVs to a single output value. Then to determine the degree of similarity between C-PFVs we define a cosine similarity measure based on radius. Furthermore, we develop a method to transform a collection of Pythagorean fuzzy values to a PFS. Finally, a method is given to solve multi-criteria decision making problems in circular Pythagorean fuzzy environment and the proposed method is practiced to a problem about selecting the best photovoltaic cell from the literature. We also study the comparison analysis and time complexity of the proposed method

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Geometry of word equations in simple algebraic groups over special fields

    Full text link
    This paper contains a survey of recent developments in investigation of word equations in simple matrix groups and polynomial equations in simple (associative and Lie) matrix algebras along with some new results on the image of word maps on algebraic groups defined over special fields: complex, real, p-adic (or close to such), or finite.Comment: 44 page

    A Relation-Algebraic Approach to L - Fuzzy Topology

    Get PDF
    Any science deals with the study of certain models of the real world. However, a model is always an abstraction resulting in some uncertainty, which must be considered. The theory of fuzzy sets is one way of formalizing one of the types of uncertainty that occurs when modeling real objects. Fuzzy sets have been applied in various real-world problems such as control system engineering, image processing, and weather forecasting systems. This research focuses on applying the categorical framework of abstract L - fuzzy relations to L-fuzzy topology with ideas, concepts and methods of the theory of L-fuzzy sets. Since L-fuzzy sets were introduced to deal with the problem of approximate reasoning, t − norm based operations are essential in the definition of L - fuzzy topologies. We use the abstract theory of arrow categories with additional t − norm based connectives to define L - fuzzy topologies abstractly. In particular, this thesis will provide an abstract relational definition of an L - fuzzy topology, consider bases of topological spaces, continuous maps, and the first two separation axioms T0 and T1. The resulting theory of L - fuzzy topological spaces provides the foundation for applications and algorithms in areas such as digital topology, i.e., analyzing images using topological features

    Analysis and Generation of Quality Polytopal Meshes with Applications to the Virtual Element Method

    Get PDF
    This thesis explores the concept of the quality of a mesh, the latter being intended as the discretization of a two- or three- dimensional domain. The topic is interdisciplinary in nature, as meshes are massively used in several fields from both the geometry processing and the numerical analysis communities. The goal is to produce a mesh with good geometrical properties and the lowest possible number of elements, able to produce results in a target range of accuracy. In other words, a good quality mesh that is also cheap to handle, overcoming the typical trade-off between quality and computational cost. To reach this goal, we first need to answer the question: ''How, and how much, does the accuracy of a numerical simulation or a scientific computation (e.g., rendering, printing, modeling operations) depend on the particular mesh adopted to model the problem? And which geometrical features of the mesh most influence the result?'' We present a comparative study of the different mesh types, mesh generation techniques, and mesh quality measures currently available in the literature related to both engineering and computer graphics applications. This analysis leads to the precise definition of the notion of quality for a mesh, in the particular context of numerical simulations of partial differential equations with the virtual element method, and the consequent construction of criteria to determine and optimize the quality of a given mesh. Our main contribution consists in a new mesh quality indicator for polytopal meshes, able to predict the performance of the virtual element method over a particular mesh before running the simulation. Strictly related to this, we also define a quality agglomeration algorithm that optimizes the quality of a mesh by wisely agglomerating groups of neighboring elements. The accuracy and the reliability of both tools are thoroughly verified in a series of tests in different scenarios
    • …
    corecore