295 research outputs found

    Models for Heavy-tailed Asset Returns

    Get PDF
    Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black-Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the socalled truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Asset return; Random number generation; Parameter estimation;

    Models for Heavy-tailed Asset Returns

    Get PDF
    Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black-Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the so-called truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Asset return; Random number generation; Parameter estimation

    Models for Heavy-tailed Asset Returns

    Get PDF
    Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black- Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the socalled truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Asset return; Random number generation; Parameter estimation

    A weak MLMC scheme for L\'evy-copula-driven SDEs with applications to the pricing of credit, equity and interest rate derivatives

    Full text link
    This paper develops a novel weak multilevel Monte-Carlo (MLMC) approximation scheme for L\'evy-driven Stochastic Differential Equations (SDEs). The scheme is based on the state space discretization (via a continuous-time Markov chain approximation) of the pure-jump component of the driving L\'evy process and is particularly suited if the multidimensional driver is given by a L\'evy copula. The multilevel version of the algorithm requires a new coupling of the approximate L\'evy drivers in the consecutive levels of the scheme, which is defined via a coupling of the corresponding Poisson point processes. The multilevel scheme is weak in the sense that the bound on the level variances is based on the coupling alone without requiring strong convergence. Moreover, the coupling is natural for the proposed discretization of jumps and is easy to simulate. The approximation scheme and its multilevel analogous are applied to examples taken from mathematical finance, including the pricing of credit, equity and interest rate derivatives.Comment: 35 page

    Heavy-tailed distributions in VaR calculations

    Get PDF
    The essence of the Value-at-Risk (VaR) and Expected Shortfall (ES) computations is estimation of low quantiles in the portfolio return distributions. Hence, the performance of market risk measurement methods depends on the quality of distributional assumptions on the underlying risk factors. This chapter is intended as a guide to heavy-tailed models for VaR-type calculations. We first describe stable laws and their lighter-tailed generalizations, the so-called truncated and tempered stable distributions. Next we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Then we discuss copulas, which enable us to construct a multivariate distribution function from the marginal (possibly different) distribution functions of n individual asset returns in a way that takes their dependence structure into account. This dependence structure may be no longer measured by correlation, but by other adequate functions like rank correlation, comonotonicity or tail dependence. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Parameter estimation; Value-at-Risk (VaR); Expected Shortfall (ES); Copula; Filtered historical simulation (FHS);

    Simulation of asset prices using Lévy processes

    Get PDF
    Includes bibliographical references (leaves 93-97).This dissertation focuses on a Lévy process driven framework for the pricing of financial instruments. The main focus of this dissertation is not, however, to price these instruments; the main focus is simulation based. Simulation is a key issue under Monte Carlo pricing and risk-neutral valuation- it is the first step towards pricing and therefore must be done accurately and with care. This dissertation looks at different kinds of Lévy processes and the various approaches one can take when simulating them
    corecore